Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.
Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
J Alzheimers Dis. 2019;71(1):165-183. doi: 10.3233/JAD-190283.
Longitudinal studies of development and disease in the human brain have motivated the acquisition of large neuroimaging data sets and the concomitant development of robust methodological and statistical tools for quantifying neurostructural changes. Longitudinal-specific strategies for acquisition and processing have potentially significant benefits including more consistent estimates of intra-subject measurements while retaining predictive power. Using the first phase of the Alzheimer's Disease Neuroimaging Initiative (ADNI-1) data, comprising over 600 subjects with multiple time points from baseline to 36 months, we evaluate the utility of longitudinal FreeSurfer and Advanced Normalization Tools (ANTs) surrogate thickness values in the context of a linear mixed-effects (LME) modeling strategy. Specifically, we estimate the residual variability and between-subject variability associated with each processing stream as it is known from the statistical literature that minimizing the former while simultaneously maximizing the latter leads to greater scientific interpretability in terms of tighter confidence intervals in calculated mean trends, smaller prediction intervals, and narrower confidence intervals for determining cross-sectional effects. This strategy is evaluated over the entire cortex, as defined by the Desikan-Killiany-Tourville labeling protocol, where comparisons are made with the cross-sectional and longitudinal FreeSurfer processing streams. Subsequent linear mixed effects modeling for identifying diagnostic groupings within the ADNI cohort is provided as supporting evidence for the utility of the proposed ANTs longitudinal framework which provides unbiased structural neuroimage processing and competitive to superior power for longitudinal structural change detection.
人类大脑发育和疾病的纵向研究促使人们获取大量神经影像学数据集,并相应开发出用于量化神经结构变化的强大方法学和统计工具。针对采集和处理的纵向特定策略具有潜在的显著优势,包括在保留预测能力的同时,更一致地估计个体内测量值。本研究使用阿尔茨海默病神经影像学倡议(ADNI-1)的第一阶段数据,该数据包含超过 600 名受试者的多次时间点数据,从基线到 36 个月,我们评估了线性混合效应(LME)建模策略中纵向 FreeSurfer 和高级归一化工具(ANTs)替代厚度值的效用。具体来说,我们估计了每个处理流的残差变异性和个体间变异性,因为从统计学文献中可知,前者最小化而后者最大化会导致计算出的平均趋势的置信区间更紧密,预测区间更小,以及用于确定横截面效应的置信区间更窄。该策略在整个大脑皮层(由 Desikan-Killiany-Tourville 标记协议定义)上进行评估,并与横截面和纵向 FreeSurfer 处理流进行比较。随后,提供了在 ADNI 队列中识别诊断分组的线性混合效应建模,作为所提出的 ANTs 纵向框架的效用的支持证据,该框架提供了无偏的结构神经影像处理,并且在检测纵向结构变化方面具有竞争力的优势。