Suppr超能文献

具有时变协变量的纵向神经影像数据的多尺度自适应边际分析

Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying covariates.

作者信息

Skup Martha, Zhu Hongtu, Zhang Heping

机构信息

Division of Biostatistics, Yale University, New Haven, CT, USA.

出版信息

Biometrics. 2012 Dec;68(4):1083-92. doi: 10.1111/j.1541-0420.2012.01767.x. Epub 2012 May 2.

Abstract

Neuroimaging data collected at repeated occasions are gaining increasing attention in the neuroimaging community due to their potential in answering questions regarding brain development, aging, and neurodegeneration. These datasets are large and complicated, characterized by the intricate spatial dependence structure of each response image, multiple response images per subject, and covariates that may vary with time. We propose a multiscale adaptive generalized method of moments (MA-GMM) approach to estimate marginal regression models for imaging datasets that contain time-varying, spatially related responses and some time-varying covariates. Our method categorizes covariates into types to determine the valid moment conditions to combine during estimation. Further, instead of assuming independence of voxels (the components that make up each subject's response image at each time point) as many current neuroimaging analysis techniques do, this method "adaptively smoothes" neuroimaging response data, computing parameter estimates by iteratively building spheres around each voxel and combining observations within the spheres with weights. MA-GMM's development adds to the few available modeling approaches intended for longitudinal imaging data analysis. Simulation studies and an analysis of a real longitudinal imaging dataset from the Alzheimer's Disease Neuroimaging Initiative are used to assess the performance of MA-GMM. Martha Skup, Hongtu Zhu, and Heping Zhang for the Alzheimer's Disease Neuroimaging Initiative.

摘要

由于在回答有关大脑发育、衰老和神经退行性变问题方面的潜力,在多个时间点收集的神经影像学数据在神经影像学领域越来越受到关注。这些数据集规模大且复杂,其特点是每个响应图像具有复杂的空间依赖结构、每个受试者有多个响应图像以及协变量可能随时间变化。我们提出一种多尺度自适应广义矩方法(MA - GMM)来估计成像数据集的边际回归模型,该数据集包含随时间变化的、与空间相关的响应以及一些随时间变化的协变量。我们的方法将协变量分类以确定在估计过程中组合的有效矩条件。此外,与许多当前神经影像学分析技术不同,该方法不假设体素(在每个时间点构成每个受试者响应图像的组成部分)相互独立,而是对神经影像学响应数据进行“自适应平滑”,通过在每个体素周围迭代构建球体并使用权重组合球体内的观测值来计算参数估计值。MA - GMM的发展为现有的少数用于纵向成像数据分析的建模方法增添了内容。使用模拟研究以及对来自阿尔茨海默病神经影像学倡议组织的真实纵向成像数据集的分析来评估MA - GMM的性能。玛莎·斯库普、朱洪图和张和平代表阿尔茨海默病神经影像学倡议组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d907/3767131/c835ff4ea4f2/nihms368317f1.jpg

相似文献

5
Temporally-constrained group sparse learning for longitudinal data analysis.用于纵向数据分析的时间约束组稀疏学习
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):264-71. doi: 10.1007/978-3-642-33454-2_33.
7
Spatially adaptive mixture modeling for analysis of FMRI time series.基于空间适应性混合模型的 fMRI 时间序列分析。
IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74. doi: 10.1109/TMI.2010.2042064. Epub 2010 Mar 25.
9
Joint High-Order Multi-Task Feature Learning to Predict the Progression of Alzheimer's Disease.联合高阶多任务特征学习预测阿尔茨海默病的进展
Med Image Comput Comput Assist Interv. 2018 Sep;11070:555-562. doi: 10.1007/978-3-030-00928-1_63. Epub 2018 Sep 26.

引用本文的文献

3
Multivariate semiparametric spatial methods for imaging data.用于成像数据的多元半参数空间方法。
Biostatistics. 2017 Apr 1;18(2):386-401. doi: 10.1093/biostatistics/kxw052.
8
Estimating anatomical trajectories with Bayesian mixed-effects modeling.使用贝叶斯混合效应模型估计解剖轨迹。
Neuroimage. 2015 Nov 1;121:51-68. doi: 10.1016/j.neuroimage.2015.06.094. Epub 2015 Jul 17.

本文引用的文献

1
Multiscale Adaptive Regression Models for Neuroimaging Data.用于神经影像数据的多尺度自适应回归模型
J R Stat Soc Series B Stat Methodol. 2011 Sep;73(4):559-578. doi: 10.1111/j.1467-9868.2010.00767.x.
2
Functional principal component model for high-dimensional brain imaging.高维脑影像的功能主成分模型。
Neuroimage. 2011 Oct 1;58(3):772-84. doi: 10.1016/j.neuroimage.2011.05.085. Epub 2011 Jun 21.
7
9
Unified univariate and multivariate random field theory.统一的单变量和多变量随机场理论。
Neuroimage. 2004;23 Suppl 1:S189-95. doi: 10.1016/j.neuroimage.2004.07.026.
10
Spatial mixture modeling of fMRI data.功能磁共振成像数据的空间混合建模
Hum Brain Mapp. 2000 Dec;11(4):233-48. doi: 10.1002/1097-0193(200012)11:4<233::aid-hbm10>3.0.co;2-f.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验