Skup Martha, Zhu Hongtu, Zhang Heping
Division of Biostatistics, Yale University, New Haven, CT, USA.
Biometrics. 2012 Dec;68(4):1083-92. doi: 10.1111/j.1541-0420.2012.01767.x. Epub 2012 May 2.
Neuroimaging data collected at repeated occasions are gaining increasing attention in the neuroimaging community due to their potential in answering questions regarding brain development, aging, and neurodegeneration. These datasets are large and complicated, characterized by the intricate spatial dependence structure of each response image, multiple response images per subject, and covariates that may vary with time. We propose a multiscale adaptive generalized method of moments (MA-GMM) approach to estimate marginal regression models for imaging datasets that contain time-varying, spatially related responses and some time-varying covariates. Our method categorizes covariates into types to determine the valid moment conditions to combine during estimation. Further, instead of assuming independence of voxels (the components that make up each subject's response image at each time point) as many current neuroimaging analysis techniques do, this method "adaptively smoothes" neuroimaging response data, computing parameter estimates by iteratively building spheres around each voxel and combining observations within the spheres with weights. MA-GMM's development adds to the few available modeling approaches intended for longitudinal imaging data analysis. Simulation studies and an analysis of a real longitudinal imaging dataset from the Alzheimer's Disease Neuroimaging Initiative are used to assess the performance of MA-GMM. Martha Skup, Hongtu Zhu, and Heping Zhang for the Alzheimer's Disease Neuroimaging Initiative.
由于在回答有关大脑发育、衰老和神经退行性变问题方面的潜力,在多个时间点收集的神经影像学数据在神经影像学领域越来越受到关注。这些数据集规模大且复杂,其特点是每个响应图像具有复杂的空间依赖结构、每个受试者有多个响应图像以及协变量可能随时间变化。我们提出一种多尺度自适应广义矩方法(MA - GMM)来估计成像数据集的边际回归模型,该数据集包含随时间变化的、与空间相关的响应以及一些随时间变化的协变量。我们的方法将协变量分类以确定在估计过程中组合的有效矩条件。此外,与许多当前神经影像学分析技术不同,该方法不假设体素(在每个时间点构成每个受试者响应图像的组成部分)相互独立,而是对神经影像学响应数据进行“自适应平滑”,通过在每个体素周围迭代构建球体并使用权重组合球体内的观测值来计算参数估计值。MA - GMM的发展为现有的少数用于纵向成像数据分析的建模方法增添了内容。使用模拟研究以及对来自阿尔茨海默病神经影像学倡议组织的真实纵向成像数据集的分析来评估MA - GMM的性能。玛莎·斯库普、朱洪图和张和平代表阿尔茨海默病神经影像学倡议组织。