Suppr超能文献

一种用于可解释个体水平预测的轻量级生成模型。

A lightweight generative model for interpretable subject-level prediction.

作者信息

Mauri Chiara, Cerri Stefano, Puonti Oula, Mühlau Mark, Van Leemput Koen

机构信息

Department of Health Technology, Technical University of Denmark, Denmark; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.

出版信息

Med Image Anal. 2025 Apr;101:103436. doi: 10.1016/j.media.2024.103436. Epub 2024 Dec 27.

Abstract

Recent years have seen a growing interest in methods for predicting an unknown variable of interest, such as a subject's diagnosis, from medical images depicting its anatomical-functional effects. Methods based on discriminative modeling excel at making accurate predictions, but are challenged in their ability to explain their decisions in anatomically meaningful terms. In this paper, we propose a simple technique for single-subject prediction that is inherently interpretable. It augments the generative models used in classical human brain mapping techniques, in which the underlying cause-effect relations can be encoded, with a multivariate noise model that captures dominant spatial correlations. Experiments demonstrate that the resulting model can be efficiently inverted to make accurate subject-level predictions, while at the same time offering intuitive visual explanations of its inner workings. The method is easy to use: training is fast for typical training set sizes, and only a single hyperparameter needs to be set by the user. Our code is available at https://github.com/chiara-mauri/Interpretable-subject-level-prediction.

摘要

近年来,人们对从描绘解剖功能效应的医学图像中预测未知感兴趣变量(如受试者的诊断)的方法越来越感兴趣。基于判别建模的方法在进行准确预测方面表现出色,但在以解剖学上有意义的术语解释其决策能力方面面临挑战。在本文中,我们提出了一种本质上可解释的单受试者预测简单技术。它用一个捕捉主导空间相关性的多变量噪声模型增强了经典人类脑图谱技术中使用的生成模型,在该生成模型中可以编码潜在的因果关系。实验表明,所得模型可以有效地求逆以进行准确的受试者水平预测,同时对其内部工作原理提供直观的视觉解释。该方法易于使用:对于典型的训练集大小,训练速度很快,并且用户只需设置一个超参数。我们的代码可在https://github.com/chiara - mauri/Interpretable - subject - level - prediction获取。

相似文献

3
Generative embedding for model-based classification of fMRI data.基于生成式嵌入的 fMRI 数据模型分类。
PLoS Comput Biol. 2011 Jun;7(6):e1002079. doi: 10.1371/journal.pcbi.1002079. Epub 2011 Jun 23.
4
Spatial-Intensity Transforms for Medical Image-to-Image Translation.医学图像到图像翻译的空间-强度变换。
IEEE Trans Med Imaging. 2023 Nov;42(11):3362-3373. doi: 10.1109/TMI.2023.3283948. Epub 2023 Oct 27.
6
Inter-subject neural code converter for visual image representation.用于视觉图像表征的受试者间神经代码转换器。
Neuroimage. 2015 Jun;113:289-97. doi: 10.1016/j.neuroimage.2015.03.059. Epub 2015 Apr 2.
8
Fast construction of interpretable whole-brain decoders.快速构建可解释的全脑解码器。
Cell Rep Methods. 2022 Jun 6;2(6):100227. doi: 10.1016/j.crmeth.2022.100227. eCollection 2022 Jun 20.

本文引用的文献

7
Learning to synthesise the ageing brain without longitudinal data.学习在没有纵向数据的情况下合成衰老大脑。
Med Image Anal. 2021 Oct;73:102169. doi: 10.1016/j.media.2021.102169. Epub 2021 Jul 18.
8
Decoding with confidence: Statistical control on decoder maps.解码有信心:解码器图谱上的统计控制。
Neuroimage. 2021 Jul 1;234:117921. doi: 10.1016/j.neuroimage.2021.117921. Epub 2021 Mar 12.
9
10
Detect and correct bias in multi-site neuroimaging datasets.检测和纠正多站点神经影像学数据集的偏差。
Med Image Anal. 2021 Jan;67:101879. doi: 10.1016/j.media.2020.101879. Epub 2020 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验