Suppr超能文献

通过两阶段分层汇总估计多种疾病的患病率。

Estimating the prevalence of multiple diseases from two-stage hierarchical pooling.

作者信息

Warasi Md S, Tebbs Joshua M, McMahan Christopher S, Bilder Christopher R

机构信息

Department of Statistics, University of South Carolina, Columbia, 29208, SC, U.S.A.

Department of Mathematical Sciences, Clemson University, Clemson, 29634, SC, U.S.A.

出版信息

Stat Med. 2016 Sep 20;35(21):3851-64. doi: 10.1002/sim.6964. Epub 2016 Apr 18.

Abstract

Testing protocols in large-scale sexually transmitted disease screening applications often involve pooling biospecimens (e.g., blood, urine, and swabs) to lower costs and to increase the number of individuals who can be tested. With the recent development of assays that detect multiple diseases, it is now common to test biospecimen pools for multiple infections simultaneously. Recent work has developed an expectation-maximization algorithm to estimate the prevalence of two infections using a two-stage, Dorfman-type testing algorithm motivated by current screening practices for chlamydia and gonorrhea in the USA. In this article, we have the same goal but instead take a more flexible Bayesian approach. Doing so allows us to incorporate information about assay uncertainty during the testing process, which involves testing both pools and individuals, and also to update information as individuals are tested. Overall, our approach provides reliable inference for disease probabilities and accurately estimates assay sensitivity and specificity even when little or no information is provided in the prior distributions. We illustrate the performance of our estimation methods using simulation and by applying them to chlamydia and gonorrhea data collected in Nebraska. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

大规模性传播疾病筛查应用中的检测方案通常涉及对生物样本(如血液、尿液和拭子)进行合并,以降低成本并增加可检测个体的数量。随着近期可检测多种疾病的检测方法的发展,同时检测生物样本池中的多种感染情况现已很常见。最近的研究工作开发了一种期望最大化算法,用于使用一种两阶段的、受美国当前衣原体和淋病筛查实践启发的 Dorfman 型检测算法来估计两种感染的患病率。在本文中,我们有相同的目标,但采用了一种更灵活的贝叶斯方法。这样做使我们能够在检测过程中纳入有关检测不确定性的信息,该过程涉及对样本池和个体进行检测,并且还能在对个体进行检测时更新信息。总体而言,即使在先验分布中提供的信息很少或没有信息,我们的方法也能为疾病概率提供可靠的推断,并准确估计检测的灵敏度和特异性。我们通过模拟以及将其应用于在内布拉斯加州收集的衣原体和淋病数据来说明我们估计方法的性能。版权所有© 2016 约翰威立父子有限公司。

相似文献

1
Estimating the prevalence of multiple diseases from two-stage hierarchical pooling.
Stat Med. 2016 Sep 20;35(21):3851-64. doi: 10.1002/sim.6964. Epub 2016 Apr 18.
2
3
Estimating the prevalence of two or more diseases using outcomes from multiplex group testing.
Biom J. 2023 Oct;65(7):e2200270. doi: 10.1002/bimj.202200270. Epub 2023 May 16.
4
Regression analysis for multiple-disease group testing data.
Stat Med. 2013 Dec 10;32(28):4954-66. doi: 10.1002/sim.5858. Epub 2013 May 23.
5
Generalized additive regression for group testing data.
Biostatistics. 2021 Oct 13;22(4):873-889. doi: 10.1093/biostatistics/kxaa003.
6
Informative Dorfman screening.
Biometrics. 2012 Mar;68(1):287-96. doi: 10.1111/j.1541-0420.2011.01644.x. Epub 2011 Jul 15.
7
Array testing for multiplex assays.
Biostatistics. 2020 Jul 1;21(3):417-431. doi: 10.1093/biostatistics/kxy058.
8
Bayesian regression for group testing data.
Biometrics. 2017 Dec;73(4):1443-1452. doi: 10.1111/biom.12704. Epub 2017 Apr 12.
9
Hierarchical group testing for multiple infections.
Biometrics. 2017 Jun;73(2):656-665. doi: 10.1111/biom.12589. Epub 2016 Sep 22.

引用本文的文献

1
A mixed-effects Bayesian regression model for multivariate group testing data.
Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujaf028.
2
Combining Biomarkers to Improve Diagnostic Accuracy in Detecting Diseases With Group-Tested Data.
Stat Med. 2024 Nov 30;43(27):5182-5192. doi: 10.1002/sim.10230. Epub 2024 Oct 7.
4
Estimating the prevalence of two or more diseases using outcomes from multiplex group testing.
Biom J. 2023 Oct;65(7):e2200270. doi: 10.1002/bimj.202200270. Epub 2023 May 16.
5
Efficient methods for the estimation of the multinomial parameter for the two-trait group testing model.
Electron J Stat. 2019;13(2):2624-2657. doi: 10.1214/19-ejs1583. Epub 2019 Aug 14.
7
Considerations for Group Testing: A Practical Approach for the Clinical Laboratory.
Clin Biochem Rev. 2020 Dec;41(3):79-92. doi: 10.33176/AACB-20-00007.
8
Revisiting Nested Group Testing Procedures: New Results, Comparisons, and Robustness.
Am Stat. 2019;73(2):117-125. doi: 10.1080/00031305.2017.1366367. Epub 2018 Jun 4.
9
Regression analysis and variable selection for two-stage multiple-infection group testing data.
Stat Med. 2019 Oct 15;38(23):4519-4533. doi: 10.1002/sim.8311. Epub 2019 Jul 11.

本文引用的文献

1
The power prior: theory and applications.
Stat Med. 2015 Dec 10;34(28):3724-49. doi: 10.1002/sim.6728. Epub 2015 Sep 7.
2
A general regression framework for group testing data, which incorporates pool dilution effects.
Stat Med. 2015 Nov 30;34(27):3606-21. doi: 10.1002/sim.6578. Epub 2015 Jul 14.
3
Prevalence estimation subject to misclassification: the mis-substitution bias and some remedies.
Stat Med. 2014 Nov 10;33(25):4482-500. doi: 10.1002/sim.6268. Epub 2014 Jul 18.
7
8
Hepatitis B virus testing by minipool nucleic acid testing: does it improve blood safety?
Transfusion. 2013 Oct;53(10 Pt 2):2449-58. doi: 10.1111/trf.12213. Epub 2013 Apr 23.
9
Group testing regression model estimation when case identification is a goal.
Biom J. 2013 Mar;55(2):173-89. doi: 10.1002/bimj.201200168. Epub 2013 Feb 8.
10
Regression models for group testing data with pool dilution effects.
Biostatistics. 2013 Apr;14(2):284-98. doi: 10.1093/biostatistics/kxs045. Epub 2012 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验