Warasi Md S, Tebbs Joshua M, McMahan Christopher S, Bilder Christopher R
Department of Statistics, University of South Carolina, Columbia, 29208, SC, U.S.A.
Department of Mathematical Sciences, Clemson University, Clemson, 29634, SC, U.S.A.
Stat Med. 2016 Sep 20;35(21):3851-64. doi: 10.1002/sim.6964. Epub 2016 Apr 18.
Testing protocols in large-scale sexually transmitted disease screening applications often involve pooling biospecimens (e.g., blood, urine, and swabs) to lower costs and to increase the number of individuals who can be tested. With the recent development of assays that detect multiple diseases, it is now common to test biospecimen pools for multiple infections simultaneously. Recent work has developed an expectation-maximization algorithm to estimate the prevalence of two infections using a two-stage, Dorfman-type testing algorithm motivated by current screening practices for chlamydia and gonorrhea in the USA. In this article, we have the same goal but instead take a more flexible Bayesian approach. Doing so allows us to incorporate information about assay uncertainty during the testing process, which involves testing both pools and individuals, and also to update information as individuals are tested. Overall, our approach provides reliable inference for disease probabilities and accurately estimates assay sensitivity and specificity even when little or no information is provided in the prior distributions. We illustrate the performance of our estimation methods using simulation and by applying them to chlamydia and gonorrhea data collected in Nebraska. Copyright © 2016 John Wiley & Sons, Ltd.
大规模性传播疾病筛查应用中的检测方案通常涉及对生物样本(如血液、尿液和拭子)进行合并,以降低成本并增加可检测个体的数量。随着近期可检测多种疾病的检测方法的发展,同时检测生物样本池中的多种感染情况现已很常见。最近的研究工作开发了一种期望最大化算法,用于使用一种两阶段的、受美国当前衣原体和淋病筛查实践启发的 Dorfman 型检测算法来估计两种感染的患病率。在本文中,我们有相同的目标,但采用了一种更灵活的贝叶斯方法。这样做使我们能够在检测过程中纳入有关检测不确定性的信息,该过程涉及对样本池和个体进行检测,并且还能在对个体进行检测时更新信息。总体而言,即使在先验分布中提供的信息很少或没有信息,我们的方法也能为疾病概率提供可靠的推断,并准确估计检测的灵敏度和特异性。我们通过模拟以及将其应用于在内布拉斯加州收集的衣原体和淋病数据来说明我们估计方法的性能。版权所有© 2016 约翰威立父子有限公司。