Suppr超能文献

群体测试回归模型的偏差、效率和一致性。

Bias, efficiency, and agreement for group-testing regression models.

作者信息

Bilder Christopher R, Tebbs Joshua M

机构信息

Department of Statistics, University of Nebraska, Lincoln, NE 68583, U.S.A.

出版信息

J Stat Comput Simul. 2009 Jan 1;79(1):67-80. doi: 10.1080/00949650701608990.

Abstract

Group testing involves pooling individual items together and testing them simultaneously for a rare binary trait. Whether the goal is to estimate the prevalence of the trait or to identify those individuals that possess it, group testing can provide substantial benefits when compared to testing subjects individually. Recently, group-testing regression models have been proposed as a way to incorporate covariates when estimating trait prevalence. In this paper, we examine these models by comparing fits obtained from individual and group testing samples. Relative bias and efficiency measures are used to assess the accuracy and precision of the resulting estimates using different grouping strategies. We also investigate the agreement of individual and group-testing regression estimates for various grouping strategies and the effects of group size selection. Depending on how groups are formed, our results show that group-testing regression models can perform very well when compared to the analogous models based on individual observations. However, different grouping strategies can provide very different results in finite samples.

摘要

分组检测涉及将个体样本汇集在一起,并同时对一种罕见的二元性状进行检测。无论目标是估计该性状的流行率还是识别具有该性状的个体,与对个体进行检测相比,分组检测都能带来显著益处。最近,分组检测回归模型被提出,作为在估计性状流行率时纳入协变量的一种方法。在本文中,我们通过比较从个体检测样本和分组检测样本获得的拟合结果来研究这些模型。相对偏差和效率度量被用于评估使用不同分组策略得出的估计值的准确性和精确性。我们还研究了各种分组策略下个体检测和分组检测回归估计值的一致性以及组大小选择的影响。根据分组方式的不同,我们的结果表明,与基于个体观测的类似模型相比,分组检测回归模型可以表现得非常出色。然而,在有限样本中,不同的分组策略可能会产生非常不同的结果。

相似文献

3
Inverse sampling regression for pooled data.合并数据的逆抽样回归
Stat Methods Med Res. 2017 Jun;26(3):1093-1109. doi: 10.1177/0962280214568047. Epub 2015 Jan 19.
5
Generalized additive regression for group testing data.广义加性回归在组检测数据中的应用。
Biostatistics. 2021 Oct 13;22(4):873-889. doi: 10.1093/biostatistics/kxaa003.
7
Bayesian regression for group testing data.用于分组测试数据的贝叶斯回归
Biometrics. 2017 Dec;73(4):1443-1452. doi: 10.1111/biom.12704. Epub 2017 Apr 12.

引用本文的文献

1
Regression analysis of group-tested current status data.成组检测现状数据的回归分析
Biometrika. 2024 Feb 12;111(3):1047-1061. doi: 10.1093/biomet/asae006. eCollection 2024 Sep.
3
Local polynomial regression for pooled response data.合并响应数据的局部多项式回归
J Nonparametr Stat. 2020;32(4):814-837. doi: 10.1080/10485252.2020.1834104. Epub 2020 Nov 4.
6
Determination of Varying Group Sizes for Pooling Procedure.用于合并程序的不同组大小的确定。
Comput Math Methods Med. 2019 Apr 1;2019:4381084. doi: 10.1155/2019/4381084. eCollection 2019.
7
Group testing regression models with dilution submodels.带有稀释子模型的分组测试回归模型。
Stat Med. 2017 Dec 30;36(30):4860-4872. doi: 10.1002/sim.7455. Epub 2017 Aug 30.
9
Regression analysis for multiple-disease group testing data.多病组检测数据的回归分析。
Stat Med. 2013 Dec 10;32(28):4954-66. doi: 10.1002/sim.5858. Epub 2013 May 23.

本文引用的文献

3

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验