Suppr超能文献

信息丰富的 Dorfman 筛查

Informative Dorfman screening.

作者信息

McMahan Christopher S, Tebbs Joshua M, Bilder Christopher R

机构信息

Department of Statistics, University of South Carolina, Columbia, South Carolina 29208, USA.

出版信息

Biometrics. 2012 Mar;68(1):287-96. doi: 10.1111/j.1541-0420.2011.01644.x. Epub 2011 Jul 15.

Abstract

Since the early 1940s, group testing (pooled testing) has been used to reduce costs in a variety of applications, including infectious disease screening, drug discovery, and genetics. In such applications, the goal is often to classify individuals as positive or negative using initial group testing results and the subsequent process of decoding of positive pools. Many decoding algorithms have been proposed, but most fail to acknowledge, and to further exploit, the heterogeneous nature of the individuals being screened. In this article, we use individuals' risk probabilities to formulate new informative decoding algorithms that implement Dorfman retesting in a heterogeneous population. We introduce the concept of "thresholding" to classify individuals as "high" or "low risk," so that separate, risk-specific algorithms may be used, while simultaneously identifying pool sizes that minimize the expected number of tests. When compared to competing algorithms which treat the population as homogeneous, we show that significant gains in testing efficiency can be realized with virtually no loss in screening accuracy. An important additional benefit is that our new procedures are easy to implement. We apply our methods to chlamydia and gonorrhea data collected recently in Nebraska as part of the Infertility Prevention Project.

摘要

自20世纪40年代初以来,分组检测(混合检测)已被用于在包括传染病筛查、药物研发和遗传学等各种应用中降低成本。在这类应用中,目标通常是利用初始分组检测结果以及随后对阳性组的解码过程将个体分类为阳性或阴性。已经提出了许多解码算法,但大多数算法未能认识到并进一步利用被筛查个体的异质性。在本文中,我们使用个体的风险概率来制定新的信息丰富的解码算法,这些算法在异质人群中实施 Dorfman 复检。我们引入“阈值化”概念将个体分类为“高”或“低风险”,以便可以使用单独的、针对风险的算法,同时确定使预期检测次数最小化的组大小。与将人群视为同质的竞争算法相比,我们表明在几乎不损失筛查准确性的情况下可以实现检测效率的显著提高。一个重要的额外好处是我们的新程序易于实施。我们将我们的方法应用于最近在内布拉斯加州收集的衣原体和淋病数据,这些数据是不孕预防项目的一部分。

相似文献

1
Informative Dorfman screening.
Biometrics. 2012 Mar;68(1):287-96. doi: 10.1111/j.1541-0420.2011.01644.x. Epub 2011 Jul 15.
3
Two-dimensional informative array testing.
Biometrics. 2012 Sep;68(3):793-804. doi: 10.1111/j.1541-0420.2011.01726.x. Epub 2011 Dec 29.
4
Reader reaction: A note on the evaluation of group testing algorithms in the presence of misclassification.
Biometrics. 2016 Mar;72(1):299-302. doi: 10.1111/biom.12385. Epub 2015 Sep 22.
5
Pooled-testing procedures for screening high volume clinical specimens in heterogeneous populations.
Stat Med. 2012 Nov 30;31(27):3261-8. doi: 10.1002/sim.5334. Epub 2012 Mar 13.
6
Group testing regression models with fixed and random effects.
Biometrics. 2009 Dec;65(4):1270-8. doi: 10.1111/j.1541-0420.2008.01183.x.
7
8
Regression analysis for multiple-disease group testing data.
Stat Med. 2013 Dec 10;32(28):4954-66. doi: 10.1002/sim.5858. Epub 2013 May 23.
9
Informative Retesting.
J Am Stat Assoc. 2010 Sep 1;105(491):942-955. doi: 10.1198/jasa.2010.ap09231.
10
Estimating the prevalence of multiple diseases from two-stage hierarchical pooling.
Stat Med. 2016 Sep 20;35(21):3851-64. doi: 10.1002/sim.6964. Epub 2016 Apr 18.

引用本文的文献

1
Regression analysis of group-tested current status data.
Biometrika. 2024 Feb 12;111(3):1047-1061. doi: 10.1093/biomet/asae006. eCollection 2024 Sep.
2
binGroup2: Statistical Tools for Infection Identification via Group Testing.
R J. 2023 Dec;15(4):21-36. doi: 10.32614/rj-2023-081. Epub 2024 Apr 10.
4
Heterogeneity Aware Two-Stage Group Testing.
IEEE Trans Signal Process. 2021 Jul 2;69:3977-3990. doi: 10.1109/TSP.2021.3093785. eCollection 2021.
5
Nested Group Testing Procedure.
Commun Math Stat. 2022 Oct 1:1-31. doi: 10.1007/s40304-021-00269-0.
6
Simulation of group testing scenarios can boost COVID-19 screening power.
Sci Rep. 2022 Jul 13;12(1):11854. doi: 10.1038/s41598-022-14626-8.
7
Smart pooling: AI-powered COVID-19 informative group testing.
Sci Rep. 2022 Apr 20;12(1):6519. doi: 10.1038/s41598-022-10128-9.
8
Group testing via hypergraph factorization applied to COVID-19.
Nat Commun. 2022 Apr 5;13(1):1837. doi: 10.1038/s41467-022-29389-z.
9
Pooled testing of traced contacts under superspreading dynamics.
PLoS Comput Biol. 2022 Mar 28;18(3):e1010008. doi: 10.1371/journal.pcbi.1010008. eCollection 2022 Mar.
10
Pooled testing efficiency increases with test frequency.
Proc Natl Acad Sci U S A. 2022 Jan 11;119(2). doi: 10.1073/pnas.2105180119.

本文引用的文献

1
Optimal Configuration of a Square Array Group Testing Algorithm.
Commun Stat Theory Methods. 2011 Jan 1;40(3):436-448. doi: 10.1080/03610920903391303.
2
Informative Retesting.
J Am Stat Assoc. 2010 Sep 1;105(491):942-955. doi: 10.1198/jasa.2010.ap09231.
3
Three-dimensional array-based group testing algorithms.
Biometrics. 2009 Sep;65(3):903-10. doi: 10.1111/j.1541-0420.2008.01158.x. Epub 2008 Nov 13.
4
Optimizing screening for acute human immunodeficiency virus infection with pooled nucleic acid amplification tests.
J Clin Microbiol. 2008 May;46(5):1785-92. doi: 10.1128/JCM.00787-07. Epub 2008 Mar 19.
5
Blood screening for influenza.
Emerg Infect Dis. 2007 Jul;13(7):1081-3. doi: 10.3201/eid1307.060861.
6
Comparison of group testing algorithms for case identification in the presence of test error.
Biometrics. 2007 Dec;63(4):1152-63. doi: 10.1111/j.1541-0420.2007.00817.x. Epub 2007 May 14.
10
Detection of acute infections during HIV testing in North Carolina.
N Engl J Med. 2005 May 5;352(18):1873-83. doi: 10.1056/NEJMoa042291.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验