Suppr超能文献

利用 DEKOIS 2.0 评估和优化虚拟筛选工作流程——具有挑战性对接基准集的公共库。

Evaluation and optimization of virtual screening workflows with DEKOIS 2.0--a public library of challenging docking benchmark sets.

机构信息

Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.

出版信息

J Chem Inf Model. 2013 Jun 24;53(6):1447-62. doi: 10.1021/ci400115b. Epub 2013 Jun 12.

Abstract

The application of molecular benchmarking sets helps to assess the actual performance of virtual screening (VS) workflows. To improve the efficiency of structure-based VS approaches, the selection and optimization of various parameters can be guided by benchmarking. With the DEKOIS 2.0 library, we aim to further extend and complement the collection of publicly available decoy sets. Based on BindingDB bioactivity data, we provide 81 new and structurally diverse benchmark sets for a wide variety of different target classes. To ensure a meaningful selection of ligands, we address several issues that can be found in bioactivity data. We have improved our previously introduced DEKOIS methodology with enhanced physicochemical matching, now including the consideration of molecular charges, as well as a more sophisticated elimination of latent actives in the decoy set (LADS). We evaluate the docking performance of Glide, GOLD, and AutoDock Vina with our data sets and highlight existing challenges for VS tools. All DEKOIS 2.0 benchmark sets will be made accessible at http://www.dekois.com.

摘要

分子基准测试集的应用有助于评估虚拟筛选 (VS) 工作流程的实际性能。为了提高基于结构的 VS 方法的效率,可以通过基准测试来指导各种参数的选择和优化。借助 DEKOIS 2.0 库,我们旨在进一步扩展和补充公开可用的诱饵集。基于 BindingDB 生物活性数据,我们为各种不同的靶标类别提供了 81 个新的、结构多样的基准测试集。为了确保配体的选择有意义,我们解决了生物活性数据中可能存在的几个问题。我们改进了之前介绍的 DEKOIS 方法,增强了物理化学匹配,现在包括考虑分子电荷,以及更巧妙地消除诱饵集中的潜在活性 (LADS)。我们使用我们的数据集评估了 Glide、GOLD 和 AutoDock Vina 的对接性能,并强调了 VS 工具面临的现有挑战。所有的 DEKOIS 2.0 基准测试集都将在 http://www.dekois.com 上提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验