Suppr超能文献

分子指纹图谱能否在大规模虚拟筛选中识别出多种活性药物?(不能)

Do Molecular Fingerprints Identify Diverse Active Drugs in Large-Scale Virtual Screening? (No).

作者信息

Venkatraman Vishwesh, Gaiser Jeremiah, Demekas Daphne, Roy Amitava, Xiong Rui, Wheeler Travis J

机构信息

Department of Chemistry, Norwegian University of Science and Technology, 7034 Trondheim, Norway.

School of Information, University of Arizona, Tucson, AZ 85721, USA.

出版信息

Pharmaceuticals (Basel). 2024 Jul 26;17(8):992. doi: 10.3390/ph17080992.

Abstract

Computational approaches for small-molecule drug discovery now regularly scale to the consideration of libraries containing billions of candidate small molecules. One promising approach to increased the speed of evaluating billion-molecule libraries is to develop succinct representations of each molecule that enable the rapid identification of molecules with similar properties. Molecular fingerprints are thought to provide a mechanism for producing such representations. Here, we explore the utility of commonly used fingerprints in the context of predicting similar molecular activity. We show that fingerprint similarity provides little discriminative power between active and inactive molecules for a target protein based on a known active-while they may sometimes provide some enrichment for active molecules in a drug screen, a screened data set will still be dominated by inactive molecules. We also demonstrate that high-similarity actives appear to share a scaffold with the query active, meaning that they could more easily be identified by structural enumeration. Furthermore, even when limited to only active molecules, fingerprint similarity values do not correlate with compound potency. In sum, these results highlight the need for a new wave of molecular representations that will improve the capacity to detect biologically active molecules based on their similarity to other such molecules.

摘要

小分子药物发现的计算方法如今已能常规性地扩展到考虑包含数十亿候选小分子的文库。一种提高评估数十亿分子文库速度的有前景的方法是开发每个分子的简洁表示形式,以便能够快速识别具有相似性质的分子。分子指纹被认为是产生此类表示形式的一种机制。在此,我们在预测相似分子活性的背景下探索常用指纹的效用。我们表明,基于已知活性,指纹相似性在目标蛋白的活性分子和非活性分子之间几乎没有区分能力——虽然它们有时可能在药物筛选中为活性分子提供一些富集,但筛选数据集仍将以非活性分子为主。我们还证明,高相似性的活性分子似乎与查询活性分子共享一个骨架,这意味着它们可以更容易地通过结构枚举来识别。此外,即使仅限于活性分子,指纹相似性值也与化合物效力无关。总之,这些结果凸显了需要新一代分子表示形式,以提高基于与其他生物活性分子的相似性来检测生物活性分子的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/503a/11356940/8623dee1bd1e/pharmaceuticals-17-00992-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验