Catalysis Center for Energy Innovation (CCEI) and Department of Chemical and Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, United States.
J Phys Chem A. 2013 Jun 20;117(24):5211-9. doi: 10.1021/jp403355e. Epub 2013 Jun 10.
Proton transfer reactions play a key role in the conversion of biomass derived sugars to chemicals. In this study, we employ high level ab initio theoretical methods, in tandem with solvation effects to calculate the proton affinities (PA) and acidity constants (pKa) of various d-glucose and d-fructose tautomers (protonation-deprotonation processes). In addition, we compare the theoretically derived pH values of sugar solutions against experimentally measured pH values in our lab. Our results demonstrate that the protonation of any of the O atoms of the sugars is thermodynamically preferred without any significant variation in the PA values. Intramolecular hydrogen transfers, dehydration reactions, and ring-opening processes were observed, resulting from the protonation of specific hydroxyl groups on the sugars. Regarding the deprotonation processes (pKa), we found that the sugars' anomeric hydroxyls exhibit the highest acidity. The theoretically calculated pH values of sugar solutions are in excellent agreement with experimental pH measurements at low sugar concentrations. At higher sugar concentrations the calculations predict less acidic solutions than the experiments. In this case, we expect the sugars to act as solvents increasing the proton solvation energy and the acidity of the solutions. We demonstrated through linear relationships that the pKa values are correlated with the relative stability of the conjugate bases. The latter is related to hydrogen bonding and polarization of the C-O(-) bond. A plausible explanation for the good performance of the direct method in calculating the pKa values of sugars can be the presence of intramolecular hydrogen bonds on the conjugate base. Both theory and experiments manifest that fructose is a stronger acid than glucose, which is of significant importance in self-catalyzed biomass-relevant dehydration reactions.
质子转移反应在将生物质衍生的糖转化为化学物质的过程中起着关键作用。在这项研究中,我们采用了高水平的从头算理论方法,并结合溶剂化效应来计算各种 d-葡萄糖和 d-果糖互变异构体的质子亲和能 (PA) 和酸度常数 (pKa)(质子化-去质子化过程)。此外,我们还将理论推导的糖溶液 pH 值与我们实验室中实验测量的 pH 值进行了比较。我们的结果表明,糖分子中任何氧原子的质子化在热力学上都是优先的,而 PA 值没有明显变化。观察到了分子内氢键转移、脱水反应和环开环过程,这些过程是由糖上特定羟基的质子化引起的。关于去质子化过程 (pKa),我们发现糖的端基羟基具有最高的酸度。糖溶液的理论计算 pH 值与低糖浓度下的实验 pH 值测量值非常吻合。在更高的糖浓度下,计算值预测的溶液酸度低于实验值。在这种情况下,我们预计糖会作为溶剂增加质子的溶剂化能和溶液的酸度。我们通过线性关系证明,pKa 值与共轭碱的相对稳定性相关。后者与 C-O(-) 键的氢键和极化有关。直接法在计算糖的 pKa 值方面表现良好的一个可能解释是共轭碱上存在分子内氢键。理论和实验都表明,果糖比葡萄糖酸性更强,这在生物质相关的自催化脱水反应中具有重要意义。