Barrington H, McCabe T J D, Donnachie K, Fyfe Calum, McFall A, Gladkikh M, McGuire J, Yan C, Reid M
Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413395. doi: 10.1002/anie.202413395. Epub 2024 Oct 31.
We report the development and applications of a computer vision based reaction monitoring method for parallel and high throughput experimentation (HTE). Whereas previous efforts reported methods to extract bulk kinetics of one reaction from one video, this new approach enables one video to capture bulk kinetics of multiple reactions running in parallel. Case studies, in and beyond well-plate high throughput settings, are described. Analysis of parallel dye-quenching hydroxylations, DMAP-catalysed esterification, solid-liquid sedimentation dynamics, metal catalyst degradation, and biologically-relevant sugar-mediated nitro reduction reactions have each provided insight into the scope and limitations of camera-enabled high throughput kinetics as a means of widening known analytical bottlenecks in HTE for reaction discovery, mechanistic understanding, and optimisation. It is envisaged that the nature of the multi-reaction time-resolved datasets made available by this analytical approach will later serve a broad range of downstream efforts in machine learning approaches to exploring chemical space.
我们报告了一种基于计算机视觉的反应监测方法的开发与应用,该方法用于平行和高通量实验(HTE)。以往的研究报告了从一个视频中提取一个反应的整体动力学的方法,而这种新方法能够让一个视频捕捉多个并行运行反应的整体动力学。文中描述了在微孔板高通量环境内外的案例研究。对平行染料猝灭羟基化反应、DMAP催化的酯化反应、固液沉降动力学、金属催化剂降解以及生物相关的糖介导的硝基还原反应的分析,均为深入了解基于摄像头的高通量动力学的范围和局限性提供了依据,该动力学方法可作为一种手段,拓宽HTE中已知的分析瓶颈,用于反应发现、机理理解和优化。预计这种分析方法所提供的多反应时间分辨数据集的性质,将在机器学习探索化学空间的广泛下游工作中发挥作用。