Warthegau Stefan S, Meier Sebastian
Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 206, 2800 Kongens Lyngby, Denmark.
Molecules. 2024 Mar 19;29(6):1368. doi: 10.3390/molecules29061368.
Chain elongation of unprotected carbohydrates in water under mild conditions remains a challenge both in chemical and biochemical synthesis. The Knoevenagel addition or condensation enables transformations to bioactive scaffolds for pharmaceutical and agrochemical compounds. Unfortunately, the catalysts in use for these transformations often reduce the green metrics of the transformations. Here, we use in situ NMR visualizations to explore the prospective use of natural catalysts for the synthesis of triple- and quadruple-functionalized furan- or dihydrofuran-derivatives from glucose and malononitrile. The dihydrofuran derivatives are formed as kinetic, major intermediates in the pathway to furan derivatives when using naturally abundant MgO or bio-sourced chitosan and -Methyl-d-glucamine (meglumine) as the catalysts in water. Both catalyst loading, solvent composition and pH can be adapted to populate dihydrofurans with four substituents by slowing down their further reactions. Higher temperatures and higher pH values favor the formation of triple-functionalized furans over quadruple-substituted dihydrofurans, which may be bicyclic or monocyclic. Compared to more traditional catalysts, nature-sourced options offer more sustainable options that emulate natural processes. Visualization with in situ NMR contributes to streamlining the development of cheap and environmentally benign procedures for carbohydrate chain elongation.
在温和条件下于水中对未受保护的碳水化合物进行链延长,在化学合成和生物化学合成中仍然是一项挑战。克诺维纳格尔加成或缩合反应能够实现向用于药物和农用化学品化合物的生物活性支架的转化。不幸的是,用于这些转化的催化剂常常会降低转化反应的绿色指标。在此,我们利用原位核磁共振可视化技术,探索天然催化剂在从葡萄糖和丙二腈合成三官能化和四官能化呋喃或二氢呋喃衍生物方面的潜在用途。当使用天然丰富的氧化镁或生物来源的壳聚糖以及 -甲基 -d -葡糖胺(葡甲胺)作为水中的催化剂时,二氢呋喃衍生物作为动力学上的主要中间体在通往呋喃衍生物的途径中形成。通过减缓二氢呋喃的进一步反应,催化剂负载量、溶剂组成和pH值均可进行调整,以使其带有四个取代基。较高的温度和较高的pH值有利于形成三官能化呋喃而非四取代二氢呋喃,后者可能是双环或单环的。与更传统的催化剂相比,天然来源的催化剂提供了更具可持续性的选择,可模拟自然过程。原位核磁共振可视化有助于简化用于碳水化合物链延长的廉价且环境友好型方法的开发。