Suppr超能文献

从细胞到全株表型分析:未来会更加美好。

Cell to whole-plant phenotyping: the best is yet to come.

机构信息

Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium.

出版信息

Trends Plant Sci. 2013 Aug;18(8):428-39. doi: 10.1016/j.tplants.2013.04.008. Epub 2013 May 23.

Abstract

Imaging and image processing have revolutionized plant phenotyping and are now a major tool for phenotypic trait measurement. Here we review plant phenotyping systems by examining three important characteristics: throughput, dimensionality, and resolution. First, whole-plant phenotyping systems are highlighted together with advances in automation that enable significant throughput increases. Organ and cellular level phenotyping and its tools, often operating at a lower throughput, are then discussed as a means to obtain high-dimensional phenotypic data at elevated spatial and temporal resolution. The significance of recent developments in sensor technologies that give access to plant morphology and physiology-related traits is shown. Overall, attention is focused on spatial and temporal resolution because these are crucial aspects of imaging procedures in plant phenotyping systems.

摘要

成像和图像处理技术使植物表型分析发生了革命性变化,现已成为表型特征测量的主要工具。在这里,我们通过检查三个重要特征来回顾植物表型分析系统:通量、维度和分辨率。首先,重点介绍了整个植物表型分析系统以及自动化方面的进步,这些进步使通量得到了显著提高。然后讨论了器官和细胞水平的表型分析及其工具,这些工具通常通量较低,但可以以更高的时空分辨率获得多维表型数据。展示了最近在传感器技术方面的发展,这些技术使人们能够获得与植物形态和生理特性相关的性状。总的来说,我们关注的是空间和时间分辨率,因为这是植物表型分析系统成像过程的关键方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验