Suppr超能文献

叶绿素荧光成像在作物环境胁迫诊断中的应用。

Chlorophyll Fluorescence Imaging for Environmental Stress Diagnosis in Crops.

机构信息

Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea.

Vegetable Research Division, National Institute of Horticultural & Herbal Science, Wanju 55365, Republic of Korea.

出版信息

Sensors (Basel). 2024 Feb 23;24(5):1442. doi: 10.3390/s24051442.

Abstract

The field of plant phenotype is used to analyze the shape and physiological characteristics of crops in multiple dimensions. Imaging, using non-destructive optical characteristics of plants, analyzes growth characteristics through spectral data. Among these, fluorescence imaging technology is a method of evaluating the physiological characteristics of crops by inducing plant excitation using a specific light source. Through this, we investigate how fluorescence imaging responds sensitively to environmental stress in garlic and can provide important information on future stress management. In this study, near UV LED (405 nm) was used to induce the fluorescence phenomenon of garlic, and fluorescence images were obtained to classify and evaluate crops exposed to abiotic environmental stress. Physiological characteristics related to environmental stress were developed from fluorescence sample images using the Chlorophyll ratio method, and classification performance was evaluated by developing a classification model based on partial least squares discrimination analysis from the image spectrum for stress identification. The environmental stress classification performance identified from the Chlorophyll ratio was 14.9% in F673/F717, 25.6% in F685/F730, and 0.209% in F690/F735. The spectrum-developed PLS-DA showed classification accuracy of 39.6%, 56.2% and 70.7% in Smoothing, MSV, and SNV, respectively. Spectrum pretreatment-based PLS-DA showed higher discrimination performance than the existing image-based Chlorophyll ratio.

摘要

植物表型领域用于多维分析作物的形状和生理特征。成像技术利用植物的非破坏性光学特性,通过光谱数据分析生长特征。其中,荧光成像技术是通过使用特定光源诱导植物激发来评估作物生理特性的一种方法。通过这种方法,我们研究了荧光成像如何对大蒜的环境胁迫做出敏感响应,并能为未来的胁迫管理提供重要信息。本研究使用近紫外 LED(405nm)诱导大蒜的荧光现象,获取荧光图像对暴露于非生物环境胁迫的作物进行分类和评估。使用叶绿素比值法从荧光样本图像中开发与环境胁迫相关的生理特征,并通过基于偏最小二乘判别分析的图像光谱开发分类模型来评估胁迫识别的分类性能。从叶绿素比值中识别出的环境胁迫分类性能在 F673/F717 中为 14.9%,在 F685/F730 中为 25.6%,在 F690/F735 中为 0.209%。基于光谱开发的 PLS-DA 在平滑、MSV 和 SNV 中的分类准确率分别为 39.6%、56.2%和 70.7%。基于光谱预处理的 PLS-DA 比现有的基于图像的叶绿素比值具有更高的判别性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97e3/10934453/bbef1d46ad0d/sensors-24-01442-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验