Division of Epidemiology and Community Health, University of Minnesota, 1300 S 2nd Street, Minneapolis, MN 55454, USA.
Maturitas. 2013 Jul;75(3):289-93. doi: 10.1016/j.maturitas.2013.04.015. Epub 2013 May 22.
Perimenopause significantly impacts women's health, but is under-researched due to challenges in assessing perimenopause status. Using CARDIA data, we compared the validity of six approaches for classifying perimenopause status in order to better understand the performance of classification techniques which can be applied to general cohort data. Specifically, we examined the validity of a self-reported question concerning changes in menstrual cycle length and two full prediction models using all available data concerning menstrual cycles as potential indicators of perimenopause. The validity of these three novel methods of perimenopause classification were compared to three previously established classification methods.
For each method, women were classified as pre- or peri-menopausal at Year 15 of follow-up (ages 32-46). Year 15 perimenopause status was then used to predict Year 20 post-menopausal status (yes/no) to estimate measures of validity and area under the curve.
The validity of the methods varied greatly, with four having an area under the curve greater than 0.8.
When designing studies, researchers should collect the data required to construct a prediction model for classifying perimenopause status that includes age, smoking status, vasomotor symptoms, and cycle irregularities as predictors. The inclusion of additional data regarding menstrual cycles can be used to construct a full prediction model which may offer improved validity. Valid classification methods that use readily available data are needed to improve the scientific accuracy of research regarding perimenopause, promote research on this topic, and inform clinical practices.
围绝经期显著影响女性健康,但由于评估围绝经期状态存在挑战,相关研究较少。本研究使用 CARDIA 数据比较了六种围绝经期状态分类方法的有效性,以便更好地了解可应用于一般队列数据的分类技术的性能。具体而言,我们研究了一个关于月经周期长度变化的自我报告问题和两种使用所有有关月经周期的可用数据作为围绝经期潜在指标的完整预测模型的有效性。我们将这三种新的围绝经期分类方法的有效性与三种先前建立的分类方法进行了比较。
对于每种方法,在随访的第 15 年(32-46 岁)将女性分为绝经前或围绝经期。然后使用第 15 年的围绝经期状态来预测第 20 年的绝经后状态(是/否),以估计有效性和曲线下面积的度量。
这些方法的有效性差异很大,其中四种方法的曲线下面积大于 0.8。
在设计研究时,研究人员应收集构建围绝经期状态分类预测模型所需的数据,该模型包括年龄、吸烟状况、血管舒缩症状和周期不规则作为预测因素。包含有关月经周期的其他数据可用于构建完整的预测模型,从而可能提高有效性。需要有效的分类方法,使用易于获得的数据,以提高围绝经期研究的科学准确性,促进该主题的研究,并为临床实践提供信息。