Suppr超能文献

纤维内塑性通过矿物质/胶原滑动是鹿茸骨具有极高韧性的主要机制。

Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.

机构信息

Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, UK.

出版信息

J Mech Behav Biomed Mater. 2013 Dec;28:366-82. doi: 10.1016/j.jmbbm.2013.03.020. Epub 2013 Apr 9.

Abstract

The inelastic deformability of the mineralised matrix in bones is critical to their high toughness, but the nanoscale mechanisms are incompletely understood. Antler is a tough bone type, with a nanostructure composed of mineralised collagen fibrils ∼100nm diameter. We track the fibrillar deformation of antler tissue during cyclic loading using in situ synchrotron small-angle X-ray diffraction (SAXD), finding that residual strain remains in the fibrils after the load was removed. During repeated unloading/reloading cycles, the fibril strain shows minimal hysteresis when plotted as a function of tissue strain, indicating that permanent plastic strain accumulates inside the fibril. We model the tensile response of the mineralised collagen fibril by a two - level staggered model - including both elastic - and inelastic regimes - with debonding between mineral and collagen within fibrils triggering macroscopic inelasticity. In the model, the subsequent frictional sliding at intrafibrillar mineral/collagen interfaces accounts for subsequent inelastic deformation of the tissue in tension. The model is compared to experimental measurements of fibrillar and mineral platelet strain during tensile deformation, measured by in situ synchrotron SAXD and wide-angle X-ray diffraction (WAXD) respectively, as well as macroscopic tissue stress and strain. By fitting the model predictions to experimentally observed parameters like the yield point, elastic modulus and post-yield slope, extremely good agreement is found between the model and experimental data at both the macro- and at the nanoscale. Our results provide strong evidence that intrafibrillar sliding between mineral and collagen leads to permanent plastic strain at both the fibril and the tissue level, and that the energy thus dissipated is a significant factor behind the high toughness of antler bone.

摘要

矿化基质的非弹性变形能力对于骨骼的高韧性至关重要,但纳米尺度的机制仍不完全清楚。鹿角是一种坚韧的骨骼类型,其纳米结构由直径约 100nm 的矿化胶原纤维组成。我们使用原位同步加速器小角 X 射线衍射(SAXD)跟踪鹿角组织在循环加载过程中的纤维变形,发现负载去除后纤维中仍存在残余应变。在重复的卸载/再加载循环中,当将纤维应变绘制为组织应变的函数时,纤维应变表现出最小的滞后,表明塑性应变在纤维内累积。我们通过两级交错模型来模拟矿化胶原纤维的拉伸响应——包括弹性和非弹性区域——在纤维内的矿物质和胶原之间发生脱粘,从而引发宏观非弹性。在该模型中,随后在纤维内矿物质/胶原界面上的摩擦滑动解释了组织在拉伸过程中的后续非弹性变形。该模型与纤维和矿物质板应变的实验测量进行了比较,分别通过原位同步加速器 SAXD 和广角 X 射线衍射(WAXD)进行测量,以及宏观组织应力和应变。通过将模型预测拟合到实验观察到的参数,如屈服点、弹性模量和屈服后斜率,发现模型与宏观和纳米尺度的实验数据之间具有极好的一致性。我们的结果提供了强有力的证据,表明矿物质和胶原之间的纤维内滑动会导致纤维和组织水平上的永久塑性应变,而由此耗散的能量是鹿角骨高韧性的一个重要因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验