Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA.
Comp Biochem Physiol A Mol Integr Physiol. 2013 Sep;166(1):101-11. doi: 10.1016/j.cbpa.2013.05.016. Epub 2013 May 21.
The continuing increase of carbon dioxide (CO2) levels in the atmosphere leads to increases in global temperatures and partial pressure of CO2 (PCO2) in surface waters, causing ocean acidification. These changes are especially pronounced in shallow coastal and estuarine waters and are expected to significantly affect marine calcifiers including bivalves that are ecosystem engineers in estuarine and coastal communities. To elucidate potential effects of higher temperatures and PCO2 on physiology and biomineralization of marine bivalves, we exposed two bivalve species, the eastern oysters Crassostrea virginica and the hard clams Mercenaria mercenaria to different combinations of PCO2 (~400 and 800μatm) and temperatures (22 and 27°C) for 15weeks. Survival, bioenergetic traits (tissue levels of lipids, glycogen, glucose and high energy phosphates) and biomineralization parameters (mechanical properties of the shells and activity of carbonic anhydrase, CA) were determined in clams and oysters under different temperature and PCO2 regimes. Our analysis showed major inter-species differences in shell mechanical traits and bioenergetics parameters. Elevated temperature led to the depletion of tissue energy reserves indicating energy deficiency in both species and resulted in higher mortality in oysters. Interestingly, while elevated PCO2 had a small effect on the physiology and metabolism of both species, it improved survival in oysters. At the same time, a combination of high temperature and elevated PCO2 lead to a significant decrease in shell hardness in both species, suggesting major changes in their biomineralization processes. Overall, these studies show that global climate change and ocean acidification might have complex interactive effects on physiology, metabolism and biomineralization in coastal and estuarine marine bivalves.
大气中二氧化碳(CO2)水平的持续增加导致全球气温升高和表层水 CO2 分压(PCO2)升高,从而导致海洋酸化。这些变化在浅海沿海和河口水域尤为明显,预计将对包括双壳类在内的海洋钙化生物产生重大影响,双壳类是河口和沿海社区的生态系统工程师。为了阐明更高温度和 PCO2 对海洋双壳类动物生理和生物矿化的潜在影响,我们将两种双壳类物种,即东方牡蛎 Crassostrea virginica 和硬壳蛤 Mercenaria mercenaria,暴露于不同的 PCO2(~400 和 800μatm)和温度(22 和 27°C)组合中 15 周。在不同温度和 PCO2 条件下,测定了蛤和牡蛎的生存、生物能量特性(组织中脂质、糖原、葡萄糖和高能磷酸的水平)和生物矿化参数(壳的机械特性和碳酸酐酶,CA 的活性)。我们的分析显示出壳机械特性和生物能量参数的主要种间差异。高温导致组织能量储备枯竭,表明两种物种都存在能量不足,并导致牡蛎死亡率升高。有趣的是,虽然升高的 PCO2 对两种物种的生理和新陈代谢有很小的影响,但它提高了牡蛎的存活率。同时,高温和升高的 PCO2 的组合导致两种物种的壳硬度显著降低,表明它们的生物矿化过程发生了重大变化。总体而言,这些研究表明,全球气候变化和海洋酸化可能对沿海和河口海洋双壳类动物的生理、代谢和生物矿化产生复杂的交互影响。