Suppr超能文献

基于梯度扩展直方图子空间的二次分类进行人体检测。

Human detection by quadratic classification on subspace of extended histogram of gradients.

出版信息

IEEE Trans Image Process. 2014 Jan;23(1):287-97. doi: 10.1109/TIP.2013.2264677.

Abstract

This paper proposes a quadratic classification approach on the subspace of Extended Histogram of Gradients (ExHoG) for human detection. By investigating the limitations of Histogram of Gradients (HG) and Histogram of Oriented Gradients (HOG), ExHoG is proposed as a new feature for human detection. ExHoG alleviates the problem of discrimination between a dark object against a bright background and vice versa inherent in HG. It also resolves an issue of HOG whereby gradients of opposite directions in the same cell are mapped into the same histogram bin. We reduce the dimensionality of ExHoG using Asymmetric Principal Component Analysis (APCA) for improved quadratic classification. APCA also addresses the asymmetry issue in training sets of human detection where there are much fewer human samples than non-human samples. Our proposed approach is tested on three established benchmarking data sets--INRIA, Caltech, and Daimler--using a modified Minimum Mahalanobis distance classifier. Results indicate that the proposed approach outperforms current state-of-the-art human detection methods.

摘要

本文提出了一种基于扩展梯度直方图(ExHoG)子空间的二次分类方法,用于人体检测。通过研究梯度直方图(HG)和方向梯度直方图(HOG)的局限性,提出了 ExHoG 作为人体检测的新特征。ExHoG 缓解了 HG 固有的暗物体与亮背景之间以及反之的区分问题。它还解决了 HOG 的一个问题,即同一单元中相反方向的梯度被映射到相同的直方图 bin 中。我们使用非对称主成分分析(APCA)来降低 ExHoG 的维度,以提高二次分类的性能。APCA 还解决了人体检测训练集中的不对称问题,其中人体样本比非人体样本少得多。我们的方法在三个已建立的基准数据集——INRIA、Caltech 和 Daimler 上进行了测试,使用了改进的最小马氏距离分类器。结果表明,所提出的方法优于当前最先进的人体检测方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验