Suppr超能文献

一种基于特征融合和机器学习方法的人类活动分类有效方法。

An Effective Approach for Human Activity Classification Using Feature Fusion and Machine Learning Methods.

作者信息

Ibrahim Muhammad Junaid, Kainat Jaweria, AlSalman Hussain, Ullah Syed Sajid, Al-Hadhrami Suheer, Hussain Saddam

机构信息

Department of Computer Science, University of Wah, 47040, Pakistan.

Department of Computer Science, COMSATS University Islamabad, Wah Cantt, Pakistan.

出版信息

Appl Bionics Biomech. 2022 Feb 2;2022:7931729. doi: 10.1155/2022/7931729. eCollection 2022.

Abstract

Recent advances in image processing and machine learning methods have greatly enhanced the ability of object classification from images and videos in different applications. Classification of human activities is one of the emerging research areas in the field of computer vision. It can be used in several applications including medical informatics, surveillance, human computer interaction, and task monitoring. In the medical and healthcare field, the classification of patients' activities is important for providing the required information to doctors and physicians for medication reactions and diagnosis. Nowadays, some research approaches to recognize human activity from videos and images have been proposed using machine learning (ML) and soft computational algorithms. However, advanced computer vision methods are still considered promising development directions for developing human activity classification approach from a sequence of video frames. This paper proposes an effective automated approach using feature fusion and ML methods. It consists of five steps, which are the preprocessing, feature extraction, feature selection, feature fusion, and classification steps. Two available public benchmark datasets are utilized to train, validate, and test ML classifiers of the developed approach. The experimental results of this research work show that the accuracies achieved are 99.5% and 99.9% on the first and second datasets, respectively. Compared with many existing related approaches, the proposed approach attained high performance results in terms of sensitivity, accuracy, precision, and specificity evaluation metric.

摘要

图像处理和机器学习方法的最新进展极大地提高了在不同应用中从图像和视频进行目标分类的能力。人类活动分类是计算机视觉领域新兴的研究领域之一。它可用于多种应用,包括医学信息学、监控、人机交互和任务监测。在医疗保健领域,对患者活动进行分类对于向医生提供药物反应和诊断所需信息非常重要。如今,已经提出了一些使用机器学习(ML)和软计算算法从视频和图像中识别人类活动的研究方法。然而,先进的计算机视觉方法仍然被认为是从视频帧序列开发人类活动分类方法的有前途的发展方向。本文提出了一种使用特征融合和ML方法的有效自动化方法。它包括五个步骤,即预处理、特征提取、特征选择、特征融合和分类步骤。利用两个可用的公共基准数据集来训练、验证和测试所开发方法的ML分类器。这项研究工作的实验结果表明,在第一个和第二个数据集上分别达到了99.5%和99.9%的准确率。与许多现有的相关方法相比,所提出的方法在灵敏度、准确率、精度和特异性评估指标方面取得了高性能结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d109/8828325/a6076f68932b/ABB2022-7931729.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验