Suppr超能文献

用于医学招生的多重迷你面试的心理测量特性:概化理论分析和拉施分析的结果

Psychometric properties of the multiple mini-interview used for medical admissions: findings from generalizability and Rasch analyses.

作者信息

Sebok Stefanie S, Luu King, Klinger Don A

机构信息

Faculty of Education, Queen's University, Kingston, Ontario, Canada,

出版信息

Adv Health Sci Educ Theory Pract. 2014 Mar;19(1):71-84. doi: 10.1007/s10459-013-9463-7. Epub 2013 May 25.

Abstract

The multiple mini-interview (MMI) has become an increasingly popular admissions method for selecting prospective students into professional programs (e.g., medical school). The MMI uses a series of short, labour intensive simulation stations and scenario interviews to more effectively assess applicants' non-cognitive qualities such as empathy, critical thinking, integrity, and communication. MMI data from 455 medical school applicants were analyzed using: (1) Generalizability Theory to estimate the generalizability of the MMI and identify sources of error; and (2) the Many-Facet Rasch Model, to identify misfitting examinees, items and raters. Consistent with previous research, our results support the reliability of MMI process. However, it appears that the non-cognitive qualities are not being measured as unique constructs across stations.

摘要

多重迷你面试(MMI)已成为一种越来越受欢迎的招生方式,用于选拔准学生进入专业课程(如医学院)。MMI采用一系列简短、耗费人力的模拟站和情景面试,以更有效地评估申请人的非认知品质,如同情心、批判性思维、正直和沟通能力。对455名医学院申请人的MMI数据进行了分析,采用了:(1)概化理论来估计MMI的概化性并识别误差来源;(2)多面Rasch模型,以识别不匹配的考生、题目和评分者。与先前的研究一致,我们的结果支持MMI过程的可靠性。然而,似乎非认知品质在各个站点并未作为独特的结构进行测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验