Carlsen Ryan, Weckel-Dahman Hannah, Swanson Jessica M J
Department of Chemistry, University of Utah, Salt Lake City, Utah.
Department of Chemistry, University of Utah, Salt Lake City, Utah.
Biophys J. 2024 Dec 17;123(24):4304-4315. doi: 10.1016/j.bpj.2024.10.016. Epub 2024 Oct 30.
The dissipation of electrochemical gradients through ion channels plays a central role in biology. Herein we use voltage-responsive kinetic models of ion channels to explore how electrical and chemical potentials differentially influence ion transport properties. These models demonstrate how electrically driven flux is greater than the Nernstian equivalent chemically driven flux yet still perfectly cancels when the two gradients oppose each other. We find that the location and relative stability of ion-binding sites dictates rectification properties by shifting the location of the most voltage-sensitive transitions. However, these rectification properties invert when bulk concentrations increase relative to the binding-site stabilities, moving the rate-limiting steps from uptake into a relatively empty channel to release from an ion-blocked full channel. Additionally, the origin of channel saturation is shown to depend on the free energy of uptake relative to bulk concentrations. Collectively these insights provide a framework for interpreting and predicting how channel properties manifest in electrochemical transport behavior.
通过离子通道耗散电化学梯度在生物学中起着核心作用。在此,我们使用离子通道的电压响应动力学模型来探索电势和化学势如何不同地影响离子传输特性。这些模型表明,电驱动通量如何大于能斯特等效化学驱动通量,但当两个梯度相互对立时,仍能完美抵消。我们发现,离子结合位点的位置和相对稳定性通过改变最电压敏感转变的位置来决定整流特性。然而,当本体浓度相对于结合位点稳定性增加时,这些整流特性会反转,将限速步骤从离子进入相对空的通道转变为从离子阻塞的满通道释放。此外,通道饱和的起源被证明取决于相对于本体浓度的摄取自由能。这些见解共同为解释和预测通道特性如何在电化学传输行为中表现提供了一个框架。