Suppr超能文献

乳腺组织微阵列点的分类和免疫组化评分。

Classification and immunohistochemical scoring of breast tissue microarray spots.

出版信息

IEEE Trans Biomed Eng. 2013 Oct;60(10):2806-14. doi: 10.1109/TBME.2013.2264871. Epub 2013 May 24.

Abstract

Tissue microarrays (TMAs) facilitate the survey of very large numbers of tumors. However, the manual assessment of stained TMA sections constitutes a bottleneck in the pathologist's work flow. This paper presents a computational pipeline for automatically classifying and scoring breast cancer TMA spots that have been subjected to nuclear immunostaining. Spots are classified based on a bag of visual words approach. Immunohistochemical scoring is performed by computing spot features reflecting the proportion of epithelial nuclei that are stained and the strength of that staining. These are then mapped onto an ordinal scale used by pathologists. Multilayer perceptron classifiers are compared with latent topic models and support vector machines for spot classification, and with Gaussian process ordinal regression and linear models for scoring. Intraobserver variation is also reported. The use of posterior entropy to identify uncertain cases is demonstrated. Evaluation is performed using TMA images stained for progesterone receptor.

摘要

组织微阵列 (TMA) 便于对大量肿瘤进行调查。然而,对染色的 TMA 切片进行手动评估是病理学家工作流程中的一个瓶颈。本文提出了一种用于自动分类和评分乳腺癌 TMA 点的计算流程,这些 TMA 点已经进行了核免疫染色。基于词汇袋方法对斑点进行分类。通过计算反映染色上皮细胞核比例和染色强度的斑点特征来进行免疫组织化学评分。然后将这些特征映射到病理学家使用的有序尺度上。比较了多层感知机分类器与潜在主题模型和支持向量机进行斑点分类,以及与高斯过程有序回归和线性模型进行评分。还报告了观察者内变异。展示了使用后验熵来识别不确定病例的方法。使用孕激素受体染色的 TMA 图像进行评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验