The First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan.
Endocrinology. 2013 Aug;154(8):2600-12. doi: 10.1210/en.2012-2198. Epub 2013 May 28.
Because oxidative stress promotes insulin resistance in obesity and type 2 diabetes, it is crucial to find effective antioxidant for the purpose of decreasing this threat. In this study, we explored the effect of astaxanthin, a carotenoid antioxidant, on insulin signaling and investigated whether astaxanthin improves cytokine- and free fatty acid-induced insulin resistance in vitro. We examined the effect of astaxanthin on insulin-stimulated glucose transporter 4 (GLUT4) translocation, glucose uptake, and insulin signaling in cultured rat L6 muscle cells using plasma membrane lawn assay, 2-deoxyglucose uptake, and Western blot analysis. Next, we examined the effect of astaxanthin on TNFα- and palmitate-induced insulin resistance. The amount of reactive oxygen species generated by TNFα or palmitate with or without astaxanthin was evaluated by dichlorofluorescein staining. We also compared the effect of astaxanthin on insulin signaling with that of other antioxidants, α-lipoic acid and α-tocopherol. We observed astaxanthin enhanced insulin-stimulated GLUT4 translocation and glucose uptake, which was associated with an increase in insulin receptor substrate-1 tyrosine and Akt phosphorylation and a decrease in c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 serine 307 phosphorylation. Furthermore, astaxanthin restored TNFα- and palmitate-induced decreases in insulin-stimulated GLUT4 translocation or glucose uptake with a concomitant decrease in reactive oxygen species generation. α-Lipoic acid enhanced Akt phosphorylation and decreased ERK and JNK phosphorylation, whereas α-tocopherol enhanced ERK and JNK phosphorylation but had little effect on Akt phosphorylation. Collectively these findings indicate astaxanthin is a very effective antioxidant for ameliorating insulin resistance by protecting cells from oxidative stress generated by various stimuli including TNFα and palmitate.
由于氧化应激会促进肥胖和 2 型糖尿病患者的胰岛素抵抗,因此寻找有效的抗氧化剂来降低这种威胁至关重要。在这项研究中,我们探讨了虾青素(一种类胡萝卜素抗氧化剂)对胰岛素信号的影响,并研究了虾青素是否能改善细胞因子和游离脂肪酸诱导的体外胰岛素抵抗。我们使用质膜草坪测定法、2-脱氧葡萄糖摄取和 Western blot 分析,检测了虾青素对培养的大鼠 L6 肌肉细胞中胰岛素刺激的葡萄糖转运蛋白 4(GLUT4)易位、葡萄糖摄取和胰岛素信号的影响。接下来,我们研究了虾青素对 TNFα 和棕榈酸诱导的胰岛素抵抗的影响。通过二氯荧光素染色评估 TNFα 或棕榈酸在有无虾青素的情况下产生的活性氧的量。我们还比较了虾青素对胰岛素信号的影响与其他抗氧化剂(α-硫辛酸和 α-生育酚)的影响。我们观察到虾青素增强了胰岛素刺激的 GLUT4 易位和葡萄糖摄取,这与胰岛素受体底物-1 酪氨酸和 Akt 磷酸化增加以及 c-Jun N-末端激酶(JNK)和胰岛素受体底物-1 丝氨酸 307 磷酸化减少有关。此外,虾青素恢复了 TNFα 和棕榈酸诱导的胰岛素刺激的 GLUT4 易位或葡萄糖摄取减少,同时减少了活性氧的产生。α-硫辛酸增强了 Akt 磷酸化,减少了 ERK 和 JNK 磷酸化,而 α-生育酚增强了 ERK 和 JNK 磷酸化,但对 Akt 磷酸化影响不大。综上所述,这些发现表明虾青素是一种非常有效的抗氧化剂,可通过保护细胞免受 TNFα 和棕榈酸等各种刺激产生的氧化应激,改善胰岛素抵抗。