Suppr超能文献

CO2 富集和生长温度升高对大豆小叶代谢物的综合影响:三羧酸循环中间产物动态变化的证据。

Combined effects of CO2 enrichment and elevated growth temperatures on metabolites in soybean leaflets: evidence for dynamic changes of TCA cycle intermediates.

机构信息

Crop Systems and Global Change Laboratory, USDA-Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.

出版信息

Planta. 2013 Aug;238(2):369-80. doi: 10.1007/s00425-013-1899-8. Epub 2013 May 29.

Abstract

Soybean (Glycine max [Merr.] L.) was grown in indoor chambers with ambient (38 Pa) and elevated (70 Pa) CO2 and day/night temperature treatments of 28/20, 32/24 and 36/28 °C. We hypothesized that CO2 enrichment would mitigate the deleterious effects of elevated growth temperatures on metabolites in soybean leaflets. Net CO2 assimilation rates increased incrementally with growth temperature and were enhanced up to 24 % on average by CO2 enrichment. Stomatal conductance about doubled from the lowest to highest temperature but this was partially reversed by CO2 enrichment. Metabolites were measured thrice daily and 19 and 28 of 43 total leaf metabolites were altered by the 32/24 and 36/28 °C temperature treatments, respectively, in both CO2 treatments. Polyols, raffinose and GABA increased and 23 nonstructural carbohydrates, organic acids and amino acids decreased when the temperature was increased from 28 to 36 °C under ambient CO2. Citrate, aconitate and 2-oxoglutarate decreased over 90 % in the 36/28 °C compared to the 28/20 °C temperature treatment. Temperature-dependent changes of sugars, organic acids and all but three amino acids were almost completely eliminated by CO2 enrichment. The above findings suggested that specific TCA cycle intermediates were highly depleted by heat stress under ambient CO2. Mitigating effects of CO2 enrichment on soybean leaflet metabolites were attributed to altered rates of photosynthesis, photorespiration, dark respiration, the anaplerotic pathway and to possible changes of gene expression.

摘要

大豆(Glycine max [Merr.] L.)在具有环境(38 Pa)和升高(70 Pa)CO2 的室内温室中以及 28/20、32/24 和 36/28°C 的日/夜温度处理下生长。我们假设 CO2 富集将减轻升高的生长温度对大豆小叶代谢物的有害影响。净 CO2 同化率随生长温度的升高而逐渐增加,CO2 富集平均提高了 24%。气孔导度从最低温度到最高温度增加了一倍,但 CO2 富集部分逆转了这一趋势。代谢物每天测量三次,在两种 CO2 处理下,43 种总叶片代谢物中有 19 种和 28 种分别受到 32/24°C 和 36/28°C 温度处理的影响。在环境 CO2 下,当温度从 28°C 升高到 36°C 时,多元醇、棉子糖和 GABA 增加,23 种非结构性碳水化合物、有机酸和氨基酸减少。与 28/20°C 温度处理相比,柠檬酸、顺乌头酸和 2-氧戊二酸在 36/28°C 下减少了 90%以上。在 CO2 富集下,温度依赖性的糖、有机酸和除三种氨基酸以外的所有氨基酸的变化几乎完全消除。上述发现表明,在环境 CO2 下,热应激会使特定的 TCA 循环中间产物大量耗尽。CO2 富集对大豆小叶代谢物的缓解作用归因于光合作用、光呼吸、暗呼吸、氨甲酰磷酸途径以及可能的基因表达变化的改变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验