Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA.
Glob Chang Biol. 2013 Sep;19(9):2838-52. doi: 10.1111/gcb.12270. Epub 2013 Jul 24.
The physiological response of vegetation to increasing atmospheric carbon dioxide concentration ([CO2 ]) modifies productivity and surface energy and water fluxes. Quantifying this response is required for assessments of future climate change. Many global climate models account for this response; however, significant uncertainty remains in model simulations of this vegetation response and its impacts. Data from in situ field experiments provide evidence that previous modeling studies may have overestimated the increase in productivity at elevated [CO2 ], and the impact on large-scale water cycling is largely unknown. We parameterized the Agro-IBIS dynamic global vegetation model with observations from the SoyFACE experiment to simulate the response of soybean and maize to an increase in [CO2 ] from 375 ppm to 550 ppm. The two key model parameters that were found to vary with [CO2 ] were the maximum carboxylation rate of photosynthesis and specific leaf area. Tests of the model that used SoyFACE parameter values showed a good fit to site-level data for all variables except latent heat flux over soybean and sensible heat flux over both crops. Simulations driven with historic climate data over the central USA showed that increased [CO2 ] resulted in decreased latent heat flux and increased sensible heat flux from both crops when averaged over 30 years. Thirty-year average soybean yield increased everywhere (ca. 10%); however, there was no increase in maize yield except during dry years. Without accounting for CO2 effects on the maximum carboxylation rate of photosynthesis and specific leaf area, soybean simulations at 550 ppm overestimated leaf area and yield. Our results highlight important model parameter values that, if not modified in other models, could result in biases when projecting future crop-climate-water relationships.
植被对大气二氧化碳浓度([CO2])增加的生理响应会改变生产力和地表能量与水分通量。为评估未来气候变化,需要对这种响应进行量化。许多全球气候模型都考虑了这种响应;然而,模型对这种植被响应及其影响的模拟仍存在很大不确定性。来自现场实验的观测数据表明,先前的模拟研究可能高估了[CO2]升高对生产力的促进作用,而其对大规模水循环的影响在很大程度上是未知的。我们使用从 SoyFACE 实验中获得的数据对 Agro-IBIS 动态全球植被模型进行了参数化,以模拟大豆和玉米对[CO2]从 375 ppm 增加到 550 ppm 的响应。结果发现,两个关键的模型参数(光合作用的最大羧化速率和比叶面积)随[CO2]而变化。使用 SoyFACE 参数值对模型进行的测试表明,除了大豆的潜热通量和两种作物的感热通量之外,模型对所有变量的站点水平数据都有很好的拟合。使用美国中部历史气候数据进行的模拟表明,在 30 年的平均时间内,增加[CO2]会导致两种作物的潜热通量减少和感热通量增加。30 年平均大豆产量在所有地方都有所增加(约 10%);然而,除了在干旱年份,玉米产量没有增加。如果不考虑 CO2 对光合作用的最大羧化速率和比叶面积的影响,那么在 550 ppm 下模拟大豆会高估叶面积和产量。我们的研究结果强调了一些重要的模型参数值,如果在其他模型中不进行修正,可能会导致在预测未来作物-气候-水关系时出现偏差。