Suppr超能文献

大豆对从工业化前到遥远未来的二氧化碳浓度的光合及生物量响应。

Soybean photosynthetic and biomass responses to carbon dioxide concentrations ranging from pre-industrial to the distant future.

作者信息

Drag David W, Slattery Rebecca, Siebers Matthew, DeLucia Evan H, Ort Donald R, Bernacchi Carl J

机构信息

Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

J Exp Bot. 2020 Jun 22;71(12):3690-3700. doi: 10.1093/jxb/eraa133.

Abstract

Increasing atmospheric carbon dioxide concentration ([CO2]) directly impacts C3 plant photosynthesis and productivity, and the rate at which [CO2] is increasing is greater than initially predicted by worst-case scenario climate models. Thus, it is increasingly important to assess the physiological responses of C3 plants, especially those that serve as important crops, to [CO2] beyond the mid-range levels used in traditional experiments. Here, we grew the C3 crop soybean (Glycine max) at eight different [CO2] levels spanning subambient (340 ppm) to the highest level thought plausible (~2000 ppm) in chambers for 5 weeks. Physiological development was delayed and plant height and total leaf area increased at [CO2] levels higher than ambient conditions, with very little difference in these parameters among the elevated [CO2] treatments >900 ppm. Daily photosynthesis initially increased with rising [CO2] but began to level off at ~1000 ppm CO2. Similar results occurred in biomass accumulation. Thus, as [CO2] continues to match or exceed the worst-case emission scenarios, these results indicate that carbon gain, growth, and potentially yield increases will diminish, thereby ultimately constraining the positive impact that continuing increases in atmospheric [CO2] could have on crop productivity and global terrestrial carbon sinks.

摘要

大气中二氧化碳浓度([CO₂])的不断增加直接影响C₃植物的光合作用和生产力,而且[CO₂]的增加速率比最坏情况气候模型最初预测的还要快。因此,评估C₃植物,尤其是作为重要作物的C₃植物,对超出传统实验中使用的中等范围水平的[CO₂]的生理反应变得越来越重要。在这里,我们在生长箱中,将C₃作物大豆(Glycine max)种植在八个不同的[CO₂]水平下,范围从低于环境水平(340 ppm)到认为合理的最高水平(约2000 ppm),持续5周。在高于环境条件的[CO₂]水平下,生理发育延迟,株高和总叶面积增加,在高于900 ppm的升高[CO₂]处理之间,这些参数差异很小。每日光合作用最初随着[CO₂]的升高而增加,但在约1000 ppm CO₂时开始趋于平稳。生物量积累也出现了类似的结果。因此,随着[CO₂]继续达到或超过最坏情况排放情景,这些结果表明碳增益、生长以及潜在的产量增加将会减少,从而最终限制大气[CO₂]持续增加可能对作物生产力和全球陆地碳汇产生的积极影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faf/7475242/996b5c0ef43d/eraa133f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验