Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Universitätstraße 5, 45141, Essen, Germany.
Appl Microbiol Biotechnol. 2013 Sep;97(17):7529-41. doi: 10.1007/s00253-013-4954-2. Epub 2013 May 30.
Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use.
生物浸出金属硫化物是由多种微生物完成的。金属硫化物的溶解化学遵循两条途径,这两条途径由矿物学和金属硫化物的酸溶性决定:硫代硫酸盐途径和多硫化物途径。细菌细胞可以通过铁(II)离子和硫化合物的氧化作用来实现这种金属硫化物的溶解。由此,铁(III)离子和质子,即攻击金属硫化物的试剂,就可用了。细胞可以以浮游状态或在矿物表面形成生物膜的形式活跃;然而,就生物浸出动力学而言,后者效率更高。以嗜酸氧化亚铁硫杆菌为例,细菌胞外聚合物含有铁(III)离子,每个离子都与两个糖醛酸残基配位。所产生的正电荷允许静电附着在带负电荷的黄铁矿上。因此,复合铁(III)离子的第一个功能是介导细胞附着,而其第二个功能是氧化溶解金属硫化物,类似于非接触浸出中游离铁(III)离子的作用。在这两种情况下,从金属硫化物中提取的电子通过形成横跨周质空间并连接内外膜的超复合物的氧化还原链还原分子氧。在这篇综述中,我们总结了一些与浸矿细菌相关的最新发现,这些发现有助于更好地理解这些迷人的微生物。这些发现包括表面科学、铁和硫代谢的生物化学、厌氧代谢和生物膜形成。为了更深入地了解生物浸矿微生物及其潜在的生物技术应用,必须研究多物种浸矿生物群落中的微生物相互作用,包括细胞间通信机制。