Rossoni Stefano, Beard Simón, Segura-Bidermann María Ignacia, Duarte-Ramírez Juan, Osorio Francisco Kirhman, Varas-Godoy Manuel, Martínez-Bellange Patricio, Vera Mario, Quatrini Raquel, Castro Matías
Centro Científico y Tecnológico Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile.
Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
Front Microbiol. 2024 Jan 26;14:1331363. doi: 10.3389/fmicb.2023.1331363. eCollection 2023.
Membrane vesicles (MVs) are envelope-derived extracellular sacs that perform a broad diversity of physiological functions in bacteria. While considerably studied in pathogenic microorganisms, the roles, relevance, and biotechnological potential of MVs from environmental bacteria are less well established. family bacteria are active players in the sulfur and iron biogeochemical cycles in extremely acidic environments and drivers of the leaching of mineral ores contributing to acid rock/mine drainage (ARD/AMD) and industrial bioleaching. One key aspect of such a role is the ability of these bacteria to tightly interact with the mineral surfaces and extract electrons and nutrients to support their chemolithotrophic metabolism. Despite recent advances in the characterization of acidithiobacilli biofilms and extracellular matrix (ECM) components, our understanding of its architectural and mechanistic aspects remains scant. Using different microscopy techniques and nano-tracking analysis we show that vesiculation is a common phenomenon in distant members of the family, and further explore the role of MVs in multicellular colonization behaviors using '' as a bacterial model. Production of MVs in '' occurred in both planktonic cultures and biofilms formed on sulfur surfaces, where MVs appeared individually or in chains resembling tube-shaped membranous structures (TSMSs) important for microbial communication. Liquid chromatography-mass spectrometry data and bioinformatic analysis of the MV-associated proteome revealed that '' MVs were enriched in proteins involved in cell-cell and cell-surface processes and largely typified the MVs as outer MVs (OMVs). Finally, microbiological assays showed that amendment of '' MVs to cells and/or biofilms affects collective colonizing behaviors relevant to the ecophysiology and applications of these acidophiles, providing grounds for their exploitation in biomining.
膜泡(MVs)是源自包膜的细胞外囊泡,在细菌中发挥着广泛多样的生理功能。虽然在致病微生物中已得到大量研究,但环境细菌来源的膜泡的作用、相关性和生物技术潜力尚未得到充分证实。嗜酸菌家族细菌是极端酸性环境中硫和铁生物地球化学循环的积极参与者,也是导致酸性岩石/矿山排水(ARD/AMD)和工业生物浸出的矿物浸出的驱动因素。这一作用的一个关键方面是这些细菌能够与矿物表面紧密相互作用,并提取电子和营养物质以支持其化能无机营养代谢。尽管最近在嗜酸硫杆菌生物膜和细胞外基质(ECM)成分的表征方面取得了进展,但我们对其结构和机制方面的理解仍然不足。我们使用不同的显微镜技术和纳米追踪分析表明,囊泡化是嗜酸菌家族不同成员中的常见现象,并以嗜酸硫杆菌作为细菌模型进一步探索了膜泡在多细胞定殖行为中的作用。嗜酸硫杆菌中膜泡的产生发生在浮游培养物和硫表面形成的生物膜中,在那里膜泡单独出现或呈链状,类似于对微生物通讯很重要的管状膜结构(TSMSs)。液相色谱 - 质谱数据以及对膜泡相关蛋白质组的生物信息学分析表明,嗜酸硫杆菌的膜泡富含参与细胞间和细胞表面过程的蛋白质,并且在很大程度上可将这些膜泡归类为外膜泡(OMVs)。最后,微生物学分析表明,将嗜酸硫杆菌的膜泡添加到细胞和/或生物膜中会影响与这些嗜酸菌的生态生理学和应用相关的集体定殖行为,并为其在生物采矿中的开发利用提供了依据。