Suppr超能文献

SBERIA:基于集合的基因-环境交互作用测试,用于复杂疾病中的罕见和常见变异。

SBERIA: set-based gene-environment interaction test for rare and common variants in complex diseases.

机构信息

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.

出版信息

Genet Epidemiol. 2013 Jul;37(5):452-64. doi: 10.1002/gepi.21735. Epub 2013 May 29.

Abstract

Identification of gene-environment interaction (G × E) is important in understanding the etiology of complex diseases. However, partially due to the lack of power, there have been very few replicated G × E findings compared to the success in marginal association studies. The existing G × E testing methods mainly focus on improving the power for individual markers. In this paper, we took a different strategy and proposed a set-based gene-environment interaction test (SBERIA), which can improve the power by reducing the multiple testing burdens and aggregating signals within a set. The major challenge of the signal aggregation within a set is how to tell signals from noise and how to determine the direction of the signals. SBERIA takes advantage of the established correlation screening for G × E to guide the aggregation of genotypes within a marker set. The correlation screening has been shown to be an efficient way of selecting potential G × E candidate SNPs in case-control studies for complex diseases. Importantly, the correlation screening in case-control combined samples is independent of the interaction test. With this desirable feature, SBERIA maintains the correct type I error level and can be easily implemented in a regular logistic regression setting. We showed that SBERIA had higher power than benchmark methods in various simulation scenarios, both for common and rare variants. We also applied SBERIA to real genome-wide association studies (GWAS) data of 10,729 colorectal cancer cases and 13,328 controls and found evidence of interaction between the set of known colorectal cancer susceptibility loci and smoking.

摘要

基因-环境交互作用(G×E)的鉴定对于理解复杂疾病的病因学很重要。然而,与边缘关联研究的成功相比,由于缺乏效力,很少有经复制的 G×E 发现。现有的 G×E 检测方法主要集中在提高个体标记的效力。在本文中,我们采取了不同的策略,提出了一套基于基因-环境交互作用的测试方法(SBERIA),它可以通过减少多重检验负担和集中一组内的信号来提高效力。在一组内集中信号的主要挑战是如何区分信号和噪声,以及如何确定信号的方向。SBERIA 利用已建立的 G×E 相关性筛选来指导标记集中基因型的聚合。相关性筛选已被证明是一种有效的方法,可以在复杂疾病的病例对照研究中选择潜在的 G×E 候选 SNP。重要的是,病例对照联合样本中的相关性筛选与交互测试无关。SBERIA 具有这种理想的特征,可维持正确的Ⅰ型错误率,并可在常规逻辑回归设置中轻松实现。我们表明,在各种模拟场景中,SBERIA 比基准方法具有更高的效力,无论是常见还是罕见变异体。我们还将 SBERIA 应用于 10729 例结直肠癌病例和 13328 例对照的全基因组关联研究(GWAS)数据,发现了已知结直肠癌易感性位点与吸烟之间相互作用的证据。

相似文献

引用本文的文献

3
Gene-environment interactions in human health.人类健康中的基因-环境相互作用。
Nat Rev Genet. 2024 Nov;25(11):768-784. doi: 10.1038/s41576-024-00731-z. Epub 2024 May 28.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验