Suppr超能文献

全基因组关联研究中的基因-环境相互作用:应用于 2 型糖尿病实证研究的检验方法的比较研究。

Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes.

机构信息

Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA.

出版信息

Am J Epidemiol. 2012 Feb 1;175(3):191-202. doi: 10.1093/aje/kwr368. Epub 2011 Dec 22.

Abstract

The question of which statistical approach is the most effective for investigating gene-environment (G-E) interactions in the context of genome-wide association studies (GWAS) remains unresolved. By using 2 case-control GWAS (the Nurses' Health Study, 1976-2006, and the Health Professionals Follow-up Study, 1986-2006) of type 2 diabetes, the authors compared 5 tests for interactions: standard logistic regression-based case-control; case-only; semiparametric maximum-likelihood estimation of an empirical-Bayes shrinkage estimator; and 2-stage tests. The authors also compared 2 joint tests of genetic main effects and G-E interaction. Elevated body mass index was the exposure of interest and was modeled as a binary trait to avoid an inflated type I error rate that the authors observed when the main effect of continuous body mass index was misspecified. Although both the case-only and the semiparametric maximum-likelihood estimation approaches assume that the tested markers are independent of exposure in the general population, the authors did not observe any evidence of inflated type I error for these tests in their studies with 2,199 cases and 3,044 controls. Both joint tests detected markers with known marginal effects. Loci with the most significant G-E interactions using the standard, empirical-Bayes, and 2-stage tests were strongly correlated with the exposure among controls. Study findings suggest that methods exploiting G-E independence can be efficient and valid options for investigating G-E interactions in GWAS.

摘要

在全基因组关联研究 (GWAS) 中,哪种统计方法最适合研究基因-环境 (G-E) 相互作用的问题仍未得到解决。本文作者利用 2 项 2 型糖尿病病例对照 GWAS(1976-2006 年的护士健康研究和 1986-2006 年的健康专业人员随访研究),比较了 5 种交互作用检验方法:基于标准逻辑回归的病例对照;仅病例;经验贝叶斯收缩估计量的半参数最大似然估计;以及 2 阶段检验。作者还比较了 2 种遗传主效应和 G-E 相互作用的联合检验。升高的体重指数是感兴趣的暴露因素,并被建模为二分类特征,以避免作者在连续体重指数的主效应被错误指定时观察到的 I 型错误率膨胀。尽管仅病例和半参数最大似然估计方法都假设测试标记与一般人群中的暴露无关,但作者在其 2199 例病例和 3044 例对照研究中没有观察到这些检验存在 I 型错误率膨胀的任何证据。这两种联合检验都检测到具有已知边缘效应的标记。使用标准、经验贝叶斯和 2 阶段检验的最显著 G-E 相互作用的基因座与对照人群中的暴露高度相关。研究结果表明,利用 G-E 独立性的方法可以是高效和有效的选择,用于研究 GWAS 中的 G-E 相互作用。

相似文献

引用本文的文献

3
Genetics of glucose homeostasis in pregnancy and postpartum.妊娠期及产后血糖稳态的遗传学。
Diabetologia. 2024 Dec;67(12):2726-2739. doi: 10.1007/s00125-024-06256-8. Epub 2024 Aug 24.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验