Suppr超能文献

将多组 eQTL 权重纳入基因-环境相互作用分析可鉴定胰腺癌的新易感位点。

Incorporating multiple sets of eQTL weights into gene-by-environment interaction analysis identifies novel susceptibility loci for pancreatic cancer.

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota.

出版信息

Genet Epidemiol. 2020 Nov;44(8):880-892. doi: 10.1002/gepi.22348. Epub 2020 Aug 10.

Abstract

It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene-by-environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data-adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case-Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome-wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking-related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.

摘要

确定遗传变异和环境暴露之间的相互作用,这些相互作用可能会改变复杂疾病的风险,这具有重要的科学意义。然而,与检测遗传主要关联效应相比,检测基因-环境相互作用(G×E)通常需要更大的样本量。为了提高统计功效并更好地理解潜在的分子机制,我们将功能基因组学信息(特别是表达数量性状基因座(eQTL))纳入到一种称为 aGEw 的数据自适应 G×E 测试中。该测试自适应地从多个组织中选择最佳的 eQTL 权重,并在遗传变异水平上提供额外的加权层。广泛的模拟表明,aGEw 测试可以控制第一类错误率,并且功效对包含中性变异和非信息外部权重具有弹性。我们将所提出的 aGEw 测试应用于胰腺癌病例对照研究联盟(3585 例病例和 3482 例对照的发现队列)和 PanScan II 全基因组关联研究数据(2021 例病例和 2105 例对照的复制队列),其中吸烟是感兴趣的暴露因素。鉴定出两个新的假定与吸烟相关的胰腺癌易感基因,即 TRIP10 和 KDM3A。aGEw 测试在 R 包 aGE 中实现。

相似文献

本文引用的文献

7
Opportunities and challenges for transcriptome-wide association studies.全转录组关联研究的机遇与挑战。
Nat Genet. 2019 Apr;51(4):592-599. doi: 10.1038/s41588-019-0385-z. Epub 2019 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验