Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, USA.
J Biol Chem. 2013 Aug 2;288(31):22681-92. doi: 10.1074/jbc.M113.472365. Epub 2013 May 28.
Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs 'A' and 'B' in the central nodule of fibrin monomer to complementary holes 'a' and 'b' in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob 'A' mimetic) and GHRP (knob 'B' mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5-7) and temperature (T = 25-37 °C). There were similar structural changes in holes 'a' and 'b' during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an "all-or-none" transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization.
纤维蛋白的聚合,是血液凝块和血栓的主要结构蛋白,通过纤维蛋白单体中心节结中的“ knob 'A'”和“ knob 'B'”与另一个单体的γ-和β-节结中的互补“ hole 'a'”和“ hole 'b'”结合发生。我们使用纤维蛋白(原)片段 D 与合成肽 GPRP( knob 'A'模拟物)和 GHRP( knob 'B'模拟物)复合物的结构模型的分子动力学模拟,研究了在不同溶液条件下 A:a 和 B:b knob-hole 相互作用的特征。A:a 和 B:b knob-hole 复合物的强度大致相等,随着拉力的增加而减小;然而,解离动力学对酸度(pH 5-7)和温度(T = 25-37°C)的变化敏感。在 knob-hole 复合物的强制解离过程中,“ hole 'a'”和“ hole 'b'”中存在相似的结构变化:loop I 的伸长、内部区域的拉伸以及可移动瓣的移位。knob-hole 相互作用的破坏不是一个“全有或全无”的转变,因为它通过有或没有中间状态的不同两步或单步途径发生。在 pH 7 时,与在 pH 5 时相比,knob-hole 键更强、更紧、更脆。在 pH 7 时,B:b knob-hole 键比 A:a knob-hole 键弱、松、柔顺,但在 pH 5 时,B:b knob-hole 键比 A:a knob-hole 键强、紧、柔顺。令人惊讶的是,与 T = 25°C 相比,温度升高(T = 37°C)时 knob-hole 键更强,而不是更弱,这是由于 loop I 中的螺旋到卷曲的转变有助于稳定键。这些结果提供了纤维蛋白聚合中涉及的最重要的非共价相互作用的详细定性和定量特征。