Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States.
J Am Chem Soc. 2012 Dec 19;134(50):20396-402. doi: 10.1021/ja3076428. Epub 2012 Sep 25.
We characterized the α-to-β transition in α-helical coiled-coil connectors of the human fibrin(ogen) molecule using biomolecular simulations of their forced elongation and theoretical modeling. The force (F)-extension (X) profiles show three distinct regimes: (1) the elastic regime, in which the coiled coils act as entropic springs (F < 100-125 pN; X < 7-8 nm); (2) the constant-force plastic regime, characterized by a force-plateau (F ≈ 150 pN; X ≈ 10-35 nm); and (3) the nonlinear regime (F > 175-200 pN; X > 40-50 nm). In the plastic regime, the three-stranded α-helices undergo a noncooperative phase transition to form parallel three-stranded β-sheets. The critical extension of the α-helices is 0.25 nm, and the energy difference between the α-helices and β-sheets is 4.9 kcal/mol per helical pitch. The soft α-to-β phase transition in coiled coils might be a universal mechanism underlying mechanical properties of filamentous α-helical proteins.
我们使用生物分子模拟对人纤维蛋白(原)分子中α-螺旋卷曲螺旋连接器的α-到β-转变进行了表征,并进行了理论建模。力 (F)-延伸 (X) 曲线呈现出三个不同的区域:(1) 弹性区,其中卷曲螺旋作为熵弹簧(F < 100-125 pN;X < 7-8 nm);(2) 恒力塑性区,其特征是力平台(F ≈ 150 pN;X ≈ 10-35 nm);和 (3) 非线性区(F > 175-200 pN;X > 40-50 nm)。在塑性区,三股α-螺旋经历非协同的相转变,形成平行的三股β-折叠。α-螺旋的临界延伸为 0.25 nm,α-螺旋和β-折叠之间的能量差为每螺旋螺距 4.9 kcal/mol。卷曲螺旋中的软α-到β-相变可能是丝状α-螺旋蛋白机械性能的普遍机制。