Settivari Raja, VanDuyn Natalia, LeVora Jennifer, Nass Richard
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Neurotoxicology. 2013 Sep;38:51-60. doi: 10.1016/j.neuro.2013.05.014. Epub 2013 May 27.
Exposure to high levels of manganese (Mn) results in a neurological condition termed manganism, which is characterized by oxidative stress, abnormal dopamine (DA) signaling, and cell death. Epidemiological evidence suggests correlations with occupational exposure to Mn and the development of the movement disorder Parkinson's disease (PD), yet the molecular determinants common between the diseases are ill-defined. Glutathione S-transferases (GSTs) of the class pi (GSTπ) are phase II detoxification enzymes that conjugate both endogenous and exogenous compounds to glutathione to reduce cellular oxidative stress, and their decreased expression has recently been implicated in PD progression. In this study we demonstrate that a Caenorhabditis elegans GSTπ homologue, GST-1, inhibits Mn-induced DA neuron degeneration. We show that GST-1 is expressed in DA neurons, Mn induces GST-1 gene and protein expression, and GST-1-mediated neuroprotection is dependent on the PD-associated transcription factor Nrf2/SKN-1, as a reduction in SKN-1 gene expression results in a decrease in GST-1 protein expression and an increase in DA neuronal death. Furthermore, decreases in gene expression of the SKN-1 inhibitor WDR-23 or the GSTπ-binding cell death activator JNK/JNK-1 result in an increase in resistance to the metal. Finally, we show that the Mn-induced DA neuron degeneration is independent of the dopamine transporter DAT, but is largely dependent on the caspases CED-3 and the novel caspase CSP-1. This study identifies a C. elegans Nrf2/SKN-1-dependent GSTπ homologue, cell death effectors of GSTπ-associated xenobiotic-induced pathology, and provides the first in vivo evidence that a phase II detoxification enzyme may modulate DA neuron vulnerability in manganism.
暴露于高水平的锰(Mn)会导致一种称为锰中毒的神经疾病,其特征为氧化应激、多巴胺(DA)信号异常和细胞死亡。流行病学证据表明职业性接触锰与运动障碍帕金森病(PD)的发生有关,但这两种疾病之间共同的分子决定因素尚不明确。π类谷胱甘肽S-转移酶(GSTπ)是II期解毒酶,可将内源性和外源性化合物与谷胱甘肽结合以减轻细胞氧化应激,最近其表达降低与PD进展有关。在本研究中,我们证明秀丽隐杆线虫的GSTπ同源物GST-1可抑制锰诱导的DA神经元变性。我们发现GST-1在DA神经元中表达,锰可诱导GST-1基因和蛋白表达,且GST-1介导的神经保护作用依赖于与PD相关的转录因子Nrf2/SKN-1,因为SKN-1基因表达的降低会导致GST-1蛋白表达减少以及DA神经元死亡增加。此外,SKN-1抑制剂WDR-23或与GSTπ结合的细胞死亡激活剂JNK/JNK-1的基因表达降低会导致对该金属的抗性增加。最后,我们表明锰诱导的DA神经元变性与多巴胺转运体DAT无关,但很大程度上依赖于半胱天冬酶CED-3和新型半胱天冬酶CSP-1。本研究鉴定出一种秀丽隐杆线虫中依赖Nrf2/SKN-1的GSTπ同源物、GSTπ相关的外源性物质诱导病理过程中的细胞死亡效应器,并提供了首个体内证据,证明II期解毒酶可能调节锰中毒中DA神经元的易损性。