Suppr超能文献

脑桥被盖核深部脑刺激的计算建模。

Computational modeling of pedunculopontine nucleus deep brain stimulation.

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.

出版信息

J Neural Eng. 2013 Aug;10(4):045005. doi: 10.1088/1741-2560/10/4/045005. Epub 2013 May 31.

Abstract

OBJECTIVE

Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood.

APPROACH

Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS.

MAIN RESULTS

The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V); (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons.

SIGNIFICANCE

We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.

摘要

目的

在靠近脑桥被盖核(PPN)的地方进行深部脑刺激(DBS)被认为可以改善帕金森病患者药物难治性的步态和平衡问题。然而,评估这一 DBS 靶点的临床研究并未显示出一致的治疗效果,一些研究报告出现了感觉异常和眼球运动副作用。在 PPN-DBS 期间,脑干区域的空间和通路特异性调制程度尚不清楚。

方法

在这里,我们描述了两个计算模型,用于估计人类和转化非人类灵长类动物(NHP)研究中 PPN 区域的 DBS 直接影响。三维模型是根据每个物种的分割组织学图像、多室神经元模型以及 DBS 期间脑干中电压分布的不均匀有限元模型构建的。

主要结果

计算模型预测:(1)-3 V 单极阴极刺激可激活大多数 PPN 神经元;(2)两种物种的手术靶向误差仅为 1 毫米,就会降低激活选择性;(3)特别是,在 PPN 的尾部、内侧或前部进行单极刺激会激活相当一部分小脑上脚(在人类模型中高达-3 V 时的 60%,在 NHP 模型中高达 90%);(4)在 PPN 的前部、外侧或前部进行单极刺激会激活相当大比例的内侧丘系纤维(在人类模型中高达-3 V 时的 33%,在 NHP 模型中高达 40%);(5)目前的临床圆柱电极设计对于隔离对 PPN 神经元的调制效果不理想。

意义

我们表明,具有径向分段电极的 DBS 引线设计可能会为 PPN-DBS 带来更好的功能效果。

相似文献

1
Computational modeling of pedunculopontine nucleus deep brain stimulation.脑桥被盖核深部脑刺激的计算建模。
J Neural Eng. 2013 Aug;10(4):045005. doi: 10.1088/1741-2560/10/4/045005. Epub 2013 May 31.
4
Pedunculopontine nucleus microelectrode recordings in movement disorder patients.运动障碍患者的脚桥核微电极记录
Exp Brain Res. 2008 Jun;188(2):165-74. doi: 10.1007/s00221-008-1349-1. Epub 2008 Mar 18.

引用本文的文献

10
A Novel Lead Design for Modulation and Sensing of Deep Brain Structures.一种用于深部脑结构调制与传感的新型导联设计
IEEE Trans Biomed Eng. 2016 Jan;63(1):148-57. doi: 10.1109/TBME.2015.2492921. Epub 2015 Oct 28.

本文引用的文献

1
Three-dimensional microsurgical anatomy of cerebellar peduncles.小脑脚的三维显微解剖
Neurosurg Rev. 2013 Apr;36(2):215-24; discussion 224-25. doi: 10.1007/s10143-012-0417-y. Epub 2012 Aug 30.
6
On the origin of oscillopsia during pedunculopontine stimulation.关于脚桥核刺激期间视振荡的起源
Stereotact Funct Neurosurg. 2012;90(2):124-9. doi: 10.1159/000335871. Epub 2012 Mar 2.
10
Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study.基于 MRI 引导的靶点定位:尸体研究。
J Neural Transm (Vienna). 2011 Oct;118(10):1487-95. doi: 10.1007/s00702-011-0639-0. Epub 2011 Apr 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验