Suppr超能文献

用于编程深部脑刺激阵列的粒子群优化算法

Particle swarm optimization for programming deep brain stimulation arrays.

作者信息

Peña Edgar, Zhang Simeng, Deyo Steve, Xiao YiZi, Johnson Matthew D

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.

出版信息

J Neural Eng. 2017 Feb;14(1):016014. doi: 10.1088/1741-2552/aa52d1. Epub 2017 Jan 9.

Abstract

OBJECTIVE

Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently.

APPROACH

Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption.

MAIN RESULTS

The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n  =  3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies of  <1% between approaches.

SIGNIFICANCE

The PSO algorithm provides a computationally efficient way to program DBS systems especially those with higher electrode counts.

摘要

目的

脑深部电刺激(DBS)疗法依赖精确的神经外科靶点定位以及刺激参数的系统优化,以实现有益的临床效果。近期一项改进靶点定位的进展是开发了沿DBS电极及其周围进行分段的DBS阵列(DBSA)。然而,增加独立电极的数量带来了有效优化刺激参数的后勤挑战。

方法

用多种解决方案和目标来解决此类复杂问题在生物学中是常见的,在生物学中,复杂的集体行为源自大量通过社会互动进行学习的个体生物。在此,我们开发了一种粒子群优化(PSO)算法,用代表电极配置和刺激幅度的个体粒子群对DBSA进行编程。使用运动丘脑DBS的有限元模型,我们展示了PSO算法如何能有效地优化一个多目标函数,该函数能使感兴趣区域(ROI,运动丘脑的小脑接收区)的轴突激活预测最大化,使回避区域(ROA,体感丘脑)的轴突激活预测最小化,并使功耗最小化。

主要结果

该算法通过生成帕累托前沿解决了多目标问题。ROI和ROA激活预测在各粒子群之间是一致的(轴突激活的中位数差异<1%)。该算法能够适应:(1)电极移位(1毫米),ROI(≤9.2%)和ROA(≤1%)激活变化相对较小,且与移位方向无关;(2)最大每电极电流降低(分别降低50%和80%),ROI激活分别降低5.6%和16%;以及(3)禁用电极(n = 3和12),ROI激活分别降低1.8%和14%。此外,PSO预测与多室轴突模型模拟之间的比较表明,两种方法之间的差异<1%。

意义

PSO算法为DBS系统尤其是电极数量较多的系统编程提供了一种计算高效的方法。

相似文献

1
Particle swarm optimization for programming deep brain stimulation arrays.
J Neural Eng. 2017 Feb;14(1):016014. doi: 10.1088/1741-2552/aa52d1. Epub 2017 Jan 9.
2
Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array.
IEEE Trans Biomed Eng. 2016 Feb;63(2):359-71. doi: 10.1109/TBME.2015.2457873. Epub 2015 Jul 17.
3
Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways.
J Neural Eng. 2018 Dec;15(6):066020. doi: 10.1088/1741-2552/aae12f. Epub 2018 Sep 13.
4
Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes.
J Neural Eng. 2018 Apr;15(2):026005. doi: 10.1088/1741-2552/aaa14b.
5
Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:893-5. doi: 10.1109/IEMBS.2006.260844.
6
Clinical deep brain stimulation strategies for orientation-selective pathway activation.
J Neural Eng. 2018 Oct;15(5):056029. doi: 10.1088/1741-2552/aad978. Epub 2018 Aug 10.
8
Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
J Neural Eng. 2005 Dec;2(4):139-47. doi: 10.1088/1741-2560/2/4/010. Epub 2005 Nov 9.
9
Thalamic Directional Deep Brain Stimulation for tremor: Spend less, get more.
Brain Stimul. 2018 May-Jun;11(3):600-606. doi: 10.1016/j.brs.2017.12.015. Epub 2018 Jan 6.
10
Spatial steering of deep brain stimulation volumes using a novel lead design.
Clin Neurophysiol. 2011 Mar;122(3):558-566. doi: 10.1016/j.clinph.2010.07.026. Epub 2010 Aug 21.

引用本文的文献

1
Quasistatic approximation in neuromodulation.
J Neural Eng. 2024 Jul 24;21(4). doi: 10.1088/1741-2552/ad625e.
2
From dawn till dusk: Time-adaptive bayesian optimization for neurostimulation.
PLoS Comput Biol. 2023 Dec 13;19(12):e1011674. doi: 10.1371/journal.pcbi.1011674. eCollection 2023 Dec.
3
An optimization framework for targeted spinal cord stimulation.
J Neural Eng. 2023 Sep 28;20(5):056026. doi: 10.1088/1741-2552/acf522.
5
Modeling extracellular stimulation of retinal ganglion cells: theoretical and practical aspects.
J Neural Eng. 2023 Mar 13;20(2):026011. doi: 10.1088/1741-2552/acbf79.
7
8
Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches.
Front Neurol. 2022 Mar 9;13:825178. doi: 10.3389/fneur.2022.825178. eCollection 2022.
9
Real-Time Optimization of Retinal Ganglion Cell Spatial Activity in Response to Epiretinal Stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:2733-2741. doi: 10.1109/TNSRE.2021.3138297. Epub 2022 Jan 4.

本文引用的文献

2
Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications.
Front Neurosci. 2016 Jun 10;10:264. doi: 10.3389/fnins.2016.00264. eCollection 2016.
3
Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.
J Neural Eng. 2016 Jun;13(3):036023. doi: 10.1088/1741-2560/13/3/036023. Epub 2016 May 11.
4
A Novel Lead Design for Modulation and Sensing of Deep Brain Structures.
IEEE Trans Biomed Eng. 2016 Jan;63(1):148-57. doi: 10.1109/TBME.2015.2492921. Epub 2015 Oct 28.
5
Subject-specific computational modeling of DBS in the PPTg area.
Front Comput Neurosci. 2015 Jul 14;9:93. doi: 10.3389/fncom.2015.00093. eCollection 2015.
6
Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array.
IEEE Trans Biomed Eng. 2016 Feb;63(2):359-71. doi: 10.1109/TBME.2015.2457873. Epub 2015 Jul 17.
7
A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region.
J Neural Eng. 2015 Aug;12(4):046003. doi: 10.1088/1741-2560/12/4/046003. Epub 2015 May 28.
8
Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.
PLoS One. 2015 May 15;10(5):e0127833. doi: 10.1371/journal.pone.0127833. eCollection 2015.
9
Classification of pallidal oscillations with increasing parkinsonian severity.
J Neurophysiol. 2015 Jul;114(1):209-18. doi: 10.1152/jn.00840.2014. Epub 2015 Apr 15.
10
Directional steering: A novel approach to deep brain stimulation.
Neurology. 2014 Sep 23;83(13):1163-9. doi: 10.1212/WNL.0000000000000823. Epub 2014 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验