Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore.
PLoS One. 2013 May 28;8(5):e64763. doi: 10.1371/journal.pone.0064763. Print 2013.
Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P. falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites' development, the parasites export proteins to the infected RBCs (iRBC) membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC's adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF), and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM). With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size.
疟疾是由疟原虫(Plasmodium)属引起的最广泛和最致命的人类寄生性疾病之一,其中恶性疟原虫(P. falciparum)最为致命。寄生虫在感染期间能够侵入红细胞(RBC)。在寄生虫发育的晚期,寄生虫将蛋白质输出到受感染的 RBC 膜,并与内皮细胞表面蛋白的受体结合,这些内皮细胞排列在微血管壁上。由此导致的 iRBC 与微血管的黏附是疟疾感染过程中大多数并发症的主要来源之一。因此,开发一种通用且简单的实验方法来定量研究 iRBC 的细胞黏附和结合动力学非常重要。在这里,我们开发了一种先进的基于流动的黏附测定法,证明 iRBC 与内皮细胞 CD36 受体蛋白包被的通道的黏附是一个双稳态过程,具有滞后环。这一发现证实了最近开发的细胞黏附模型,我们使用该模型来拟合我们的实验数据。我们使用全内反射荧光(TIRF)在不同感染阶段测量了 iRBC 在剪切流下的接触面积,还使用原子力显微镜(AFM)测量了黏附受体和配体结合的动力学。利用这些参数,我们在模型中再现了 iRBC 黏附特性随寄生虫成熟而发生的实验观察到的变化,并研究了导致这些变化的主要机制,即剪切流期间的接触面积以及破裂面积大小。