Suppr超能文献

利用信息丰富的观测时间分析面板计数数据。

Analysing panel count data with informative observation times.

作者信息

Huang Chiung-Yu, Wang Mei-Cheng, Zhang Ying

机构信息

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, U.S.A.

出版信息

Biometrika. 2006 Dec;93(4):763-775. doi: 10.1093/biomet/93.4.763.

Abstract

In this paper, we study panel count data with informative observation times. We assume nonparametric and semiparametric proportional rate models for the underlying event process, where the form of the baseline rate function is left unspecified and a subject-specific frailty variable inflates or deflates the rate function multiplicatively. The proposed models allow the event processes and observation times to be correlated through their connections with the unobserved frailty; moreover, the distributions of both the frailty variable and observation times are considered as nuisance parameters. The baseline rate function and the regression parameters are estimated by maximising a conditional likelihood function of observed event counts and solving estimation equations. Large-sample properties of the proposed estimators are studied. Numerical studies demonstrate that the proposed estimation procedures perform well for moderate sample sizes. An application to a bladder tumour study is presented.

摘要

在本文中,我们研究具有信息性观测时间的面板计数数据。我们对潜在事件过程采用非参数和半参数比例率模型,其中基线率函数的形式未作具体规定,且一个特定于个体的脆弱性变量以乘法方式使率函数增大或减小。所提出的模型允许事件过程和观测时间通过它们与未观测到的脆弱性的联系而相关;此外,脆弱性变量和观测时间的分布都被视为干扰参数。通过最大化观测到的事件计数的条件似然函数并求解估计方程来估计基线率函数和回归参数。研究了所提出估计量的大样本性质。数值研究表明,所提出的估计程序对于中等样本量表现良好。还给出了在膀胱肿瘤研究中的一个应用。

相似文献

引用本文的文献

3

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验