Suppr超能文献

磷脂酰肌醇 3,5-二磷酸(PI(3,5)P2)依赖性 Tup1 转化(PIPTC)调节从糖酵解到糖异生的代谢重编程。

The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.

出版信息

J Biol Chem. 2013 Jul 12;288(28):20633-45. doi: 10.1074/jbc.M113.452813. Epub 2013 Jun 3.

Abstract

Glucose/carbon metabolism is a fundamental cellular process in living cells. In response to varying environments, eukaryotic cells reprogram their glucose/carbon metabolism between aerobic or anaerobic glycolysis, oxidative phosphorylation, and/or gluconeogenesis. The distinct type of glucose/carbon metabolism that a cell carries out has significant effects on the cell's proliferation and differentiation. However, it is poorly understood how the reprogramming of glucose/carbon metabolism is regulated. Here, we report a novel endosomal PI(3,5)P2 lipid-dependent regulatory mechanism that is required for metabolic reprogramming from glycolysis to gluconeogenesis in Saccharomyces cerevisiae. Certain gluconeogenesis genes, such as FBP1 (encoding fructose-1,6-bisphosphatase 1) and ICL1 (encoding isocitrate lyase 1) are under control of the Mig1 repressor and Cyc8-Tup1 corepressor complex. We previously identified the PI(3,5)P2-dependent Tup1 conversion (PIPTC), a mechanism to convert Cyc8-Tup1 corepressor to Cti6-Cyc8-Tup1 coactivator. We demonstrate that the PIPTC plays a critical role for transcriptional activation of FBP1 and ICL1. Furthermore, without the PIPTC, the Cat8 and Sip4 transcriptional activators cannot be efficiently recruited to the promoters of FBP1 and ICL1, suggesting a key role for the PIPTC in remodulating the chromatin architecture at the promoters. Our findings expand our understanding of the regulatory mechanisms for metabolic reprogramming in eukaryotes to include key regulation steps outside the nucleus. Given that Tup1 and the metabolic enzymes that control PI(3,5)P2 are highly conserved among eukaryotes, our findings may provide important insights toward understanding glucose/carbon metabolic reprogramming in other eukaryotes, including humans.

摘要

葡萄糖/碳代谢是活细胞中的基本细胞过程。真核细胞会根据环境的变化,在有氧或无氧糖酵解、氧化磷酸化和/或糖异生之间重新规划葡萄糖/碳代谢。细胞进行的葡萄糖/碳代谢的独特类型对细胞的增殖和分化有重大影响。然而,细胞内葡萄糖/碳代谢的重新规划是如何被调控的,目前仍知之甚少。在这里,我们报道了一种新的内体 PI(3,5)P2 脂质依赖性调控机制,该机制对于酿酒酵母从糖酵解到糖异生的代谢重编程是必需的。某些糖异生基因,如 FBP1(编码果糖-1,6-双磷酸酶 1)和 ICL1(编码异柠檬酸裂解酶 1),受 Mig1 阻遏物和 Cyc8-Tup1 核心阻遏复合物的控制。我们之前已经鉴定了 PI(3,5)P2 依赖性 Tup1 转化(PIPTC),这是一种将 Cyc8-Tup1 核心阻遏物转化为 Cti6-Cyc8-Tup1 共激活物的机制。我们证明,PIPTC 对于 FBP1 和 ICL1 的转录激活起着关键作用。此外,没有 PIPTC,Cat8 和 Sip4 转录激活因子就不能有效地被招募到 FBP1 和 ICL1 的启动子上,这表明 PIPTC 在重塑启动子上的染色质结构方面起着关键作用。我们的研究结果扩展了我们对真核生物代谢重编程调控机制的理解,将关键的调控步骤纳入到了细胞核之外。鉴于 Tup1 和控制 PI(3,5)P2 的代谢酶在真核生物中高度保守,我们的发现可能为理解其他真核生物(包括人类)的葡萄糖/碳代谢重编程提供重要的见解。

相似文献

5

引用本文的文献

本文引用的文献

1
Cancer. Silencing a metabolic oncogene.癌症。沉默代谢致癌基因。
Science. 2013 May 3;340(6132):558-9. doi: 10.1126/science.1238523.
4
ATAC-king the complexity of SAGA during evolution.在进化过程中攻克 SAGA 的复杂性。
Genes Dev. 2012 Mar 15;26(6):527-41. doi: 10.1101/gad.184705.111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验