Department of Neuroscience, Erasmus MC Rotterdam Netherlands.
Front Neural Circuits. 2013 May 21;7:95. doi: 10.3389/fncir.2013.00095. eCollection 2013.
Cerebellar granule cells (GrCs) convey information from mossy fibers (MFs) to Purkinje cells (PCs) via their parallel fibers (PFs). MF to GrC signaling allows transmission of frequencies up to 1 kHz and GrCs themselves can also fire bursts of action potentials with instantaneous frequencies up to 1 kHz. So far, in the scientific literature no evidence has been shown that these high-frequency bursts also exist in awake, behaving animals. More so, it remains to be shown whether such high-frequency bursts can transmit temporally coded information from MFs to PCs and/or whether these patterns of activity contribute to the spatiotemporal filtering properties of the GrC layer. Here, we show that, upon sensory stimulation in both un-anesthetized rabbits and mice, GrCs can show bursts that consist of tens of spikes at instantaneous frequencies over 800 Hz. In vitro recordings from individual GrC-PC pairs following high-frequency stimulation revealed an overall low initial release probability of ~0.17. Nevertheless, high-frequency burst activity induced a short-lived facilitation to ensure signaling within the first few spikes, which was rapidly followed by a reduction in transmitter release. The facilitation rate among individual GrC-PC pairs was heterogeneously distributed and could be classified as either "reluctant" or "responsive" according to their release characteristics. Despite the variety of efficacy at individual connections, grouped activity in GrCs resulted in a linear relationship between PC response and PF burst duration at frequencies up to 300 Hz allowing rate coding to persist at the network level. Together, these findings support the hypothesis that the cerebellar granular layer acts as a spatiotemporal filter between MF input and PC output (D'Angelo and De Zeeuw, 2009).
小脑颗粒细胞 (GrC) 通过其平行纤维 (PF) 将信息从苔藓纤维 (MF) 传递到浦肯野细胞 (PC)。MF 到 GrC 的信号传递允许频率高达 1 kHz 的传输,并且 GrC 本身也可以以高达 1 kHz 的瞬时频率爆发动作电位。到目前为止,在科学文献中还没有证据表明这些高频爆发也存在于清醒、行为的动物中。更重要的是,仍然需要证明这些高频爆发是否可以将时间编码信息从 MF 传递到 PC,以及这些活动模式是否有助于 GrC 层的时空滤波特性。在这里,我们表明,在未麻醉的兔子和小鼠进行感觉刺激时,GrC 可以表现出由数十个尖峰组成的爆发,瞬时频率超过 800 Hz。在高频刺激后对单个 GrC-PC 对进行的体外记录显示,总体初始释放概率约为 0.17。然而,高频爆发活动诱导了短暂的易化作用,以确保在前几个尖峰中进行信号传递,随后迅速降低递质释放。个体 GrC-PC 对之间的易化率分布不均,根据其释放特性可分为“勉强”或“响应”。尽管在个体连接之间存在各种功效,但 GrC 的分组活动导致在高达 300 Hz 的频率下 PC 反应与 PF 爆发持续时间之间呈线性关系,允许在网络级别上保持率编码。总之,这些发现支持了小脑颗粒层作为 MF 输入和 PC 输出之间的时空滤波器的假设 (D'Angelo 和 De Zeeuw, 2009)。