Henak Corinne R, Kapron Ashley L, Anderson Andrew E, Ellis Benjamin J, Maas Steve A, Weiss Jeffrey A
Department of Bioengineering, University of Utah, 72 South Central Campus Dr., Room 3750, Salt Lake City, UT, 84112, USA.
Biomech Model Mechanobiol. 2014 Apr;13(2):387-400. doi: 10.1007/s10237-013-0504-1. Epub 2013 Jun 5.
Hip osteoarthritis may be initiated and advanced by abnormal cartilage contact mechanics, and finite element (FE) modeling provides an approach with the potential to allow the study of this process. Previous FE models of the human hip have been limited by single specimen validation and the use of quasi-linear or linear elastic constitutive models of articular cartilage. The effects of the latter assumptions on model predictions are unknown, partially because data for the instantaneous behavior of healthy human hip cartilage are unavailable. The aims of this study were to develop and validate a series of specimen-specific FE models, to characterize the regional instantaneous response of healthy human hip cartilage in compression, and to assess the effects of material nonlinearity, inhomogeneity and specimen-specific material coefficients on FE predictions of cartilage contact stress and contact area. Five cadaveric specimens underwent experimental loading, cartilage material characterization and specimen-specific FE modeling. Cartilage in the FE models was represented by average neo-Hookean, average Veronda Westmann and specimen- and region-specific Veronda Westmann hyperelastic constitutive models. Experimental measurements and FE predictions compared well for all three cartilage representations, which was reflected in average RMS errors in contact stress of less than 25%. The instantaneous material behavior of healthy human hip cartilage varied spatially, with stiffer acetabular cartilage than femoral cartilage and stiffer cartilage in lateral regions than in medial regions. The Veronda Westmann constitutive model with average material coefficients accurately predicted peak contact stress, average contact stress, contact area and contact patterns. The use of subject- and region-specific material coefficients did not increase the accuracy of FE model predictions. The neo-Hookean constitutive model underpredicted peak contact stress in areas of high stress. The results of this study support the use of average cartilage material coefficients in predictions of cartilage contact stress and contact area in the normal hip. The regional characterization of cartilage material behavior provides the necessary inputs for future computational studies, to investigate other mechanical parameters that may be correlated with OA and cartilage damage in the human hip. In the future, the results of this study can be applied to subject-specific models to better understand how abnormal hip contact stress and contact area contribute to OA.
髋关节骨关节炎可能由异常的软骨接触力学引发并进展,有限元(FE)建模提供了一种有潜力研究此过程的方法。先前的人体髋关节有限元模型受到单一样本验证以及使用关节软骨的准线性或线性弹性本构模型的限制。后一种假设对模型预测的影响尚不清楚,部分原因是缺乏健康人体髋关节软骨瞬时行为的数据。本研究的目的是开发并验证一系列特定样本的有限元模型,表征健康人体髋关节软骨在压缩时的区域瞬时响应,并评估材料非线性、不均匀性和特定样本材料系数对软骨接触应力和接触面积有限元预测的影响。五个尸体标本接受了实验加载、软骨材料表征和特定样本的有限元建模。有限元模型中的软骨由平均新胡克模型、平均韦龙达 - 韦斯特曼模型以及特定样本和区域的韦龙达 - 韦斯特曼超弹性本构模型表示。对于所有三种软骨表示,实验测量值与有限元预测值比较吻合,这体现在接触应力的平均均方根误差小于25%。健康人体髋关节软骨的瞬时材料行为在空间上有所变化,髋臼软骨比股骨软骨更硬,外侧区域的软骨比内侧区域更硬。具有平均材料系数的韦龙达 - 韦斯特曼本构模型准确地预测了峰值接触应力、平均接触应力、接触面积和接触模式。使用特定个体和区域的材料系数并未提高有限元模型预测的准确性。新胡克本构模型在高应力区域低估了峰值接触应力。本研究结果支持在正常髋关节软骨接触应力和接触面积预测中使用平均软骨材料系数。软骨材料行为的区域表征为未来的计算研究提供了必要的输入,以研究可能与人类髋关节骨关节炎和软骨损伤相关的其他力学参数。未来,本研究结果可应用于特定个体模型,以更好地理解异常的髋关节接触应力和接触面积如何导致骨关节炎。