Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
J Biol Chem. 2013 Aug 9;288(32):23488-504. doi: 10.1074/jbc.M112.442335. Epub 2013 Jun 4.
The chlorite dismutases (C-family proteins) are a widespread family of heme-binding proteins for which chemical and biological roles remain unclear. An association of the gene with heme biosynthesis in Gram-positive bacteria was previously demonstrated by experiments involving introduction of genes from two Gram-positive species into heme biosynthesis mutant strains of Escherichia coli, leading to the gene being renamed hemQ. To assess the gene product's biological role more directly, a Staphylococcus aureus strain with an inactivated hemQ gene was generated and shown to be a slow growing small colony variant under aerobic but not anaerobic conditions. The small colony variant phenotype is rescued by the addition of exogenous heme despite an otherwise wild type heme biosynthetic pathway. The ΔhemQ mutant accumulates coproporphyrin specifically under aerobic conditions. Although its sequence is highly similar to functional chlorite dismutases, the HemQ protein has no steady state reactivity with chlorite, very modest reactivity with H2O2 or peracetic acid, and no observable transient intermediates. HemQ's equilibrium affinity for heme is in the low micromolar range. Holo-HemQ reconstituted with heme exhibits heme lysis after <50 turnovers with peroxide and <10 turnovers with chlorite. The heme-free apoprotein aggregates or unfolds over time. IsdG-like proteins and antibiotic biosynthesis monooxygenases are close sequence and structural relatives of HemQ that use heme or porphyrin-like organic molecules as substrates. The genetic and biochemical data suggest a similar substrate role for heme or porphyrin, with possible sensor-regulator functions for the protein. HemQ heme could serve as the means by which S. aureus reversibly adopts an SCV phenotype in response to redox stress.
氯酸盐歧化酶(C 族蛋白)是一种广泛存在的血红素结合蛋白家族,其化学和生物学作用仍不清楚。先前的实验表明,革兰氏阳性菌中的基因与血红素生物合成有关,该实验涉及将来自两种革兰氏阳性菌的基因引入大肠杆菌的血红素生物合成突变株中,导致该基因被重新命名为 hemQ。为了更直接地评估该基因产物的生物学作用,生成了一株缺失 hemQ 基因的金黄色葡萄球菌菌株,并在有氧条件下但在厌氧条件下显示为生长缓慢的小菌落变体。尽管其他血红素生物合成途径正常,但添加外源性血红素可挽救小菌落变体表型。ΔhemQ 突变体在有氧条件下特异性积累粪卟啉。尽管其序列与功能性氯酸盐歧化酶高度相似,但 HemQ 蛋白与氯酸盐没有稳态反应性,与 H2O2 或过氧乙酸的反应性非常温和,并且没有观察到可观察的瞬态中间产物。HemQ 对血红素的平衡亲和力处于低微摩尔范围。用血红素重新构成的全血红素-HemQ 在过氧化物<50 次周转和氯酸盐<10 次周转后表现出血红素裂解。无血红素的脱辅基蛋白随着时间的推移聚集或展开。与 HemQ 具有密切序列和结构关系的 IsdG 样蛋白和抗生素生物合成单加氧酶将血红素或卟啉样有机分子用作底物。遗传和生化数据表明,血红素或卟啉可能具有类似的底物作用,并且该蛋白可能具有传感器调节剂功能。HemQ 血红素可以作为金黄色葡萄球菌可逆地采用 SCV 表型以响应氧化还原应激的手段。