Suppr超能文献

革兰氏阳性菌中血红素生物合成最后几步的代谢通量控制。

Control of Metabolite Flux during the Final Steps of Heme Biosynthesis in Gram-Positive Bacteria.

机构信息

Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59715 , United States.

Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232-2561 , United States.

出版信息

Biochemistry. 2019 Dec 31;58(52):5259-5270. doi: 10.1021/acs.biochem.9b00140. Epub 2019 Jun 26.

Abstract

The pathway for assembling heme ends with a unique set of enzymes in Gram-positive bacteria. Substrates for these reactions include coproporphyrin III, Fe(II), and HO, which are highly reactive and toxic. Because these bacteria lack membranous compartments, we hypothesized that metabolite flux may occur via a transient protein-protein interaction between the final two pathway enzymes, coproporphyrin ferrochelatase (CpfC) and coproheme decarboxylase (ChdC). This hypothesis was tested using enzymes from the pathogen and a corresponding Δ knockout strain. The ultraviolet-visible spectral features of coproporphyrin III served as an indicator of a protein-protein interaction. A CpfC-ChdC of 17 ± 7 μM was determined, consistent with transient complexation and supported by the observation that the catalytic competence of both enzymes was moderately suppressed in the stable complex. The Δ was transformed with plasmids containing single-amino acid mutants in the active site gate of ChdC. The porphyrin content and growth phenotypes of these mutants showed that K129 and Y133 promote the ChdC-CpfC interaction and revealed the importance of E120. Understanding the nature of interactions between these enzymes and those further upstream in the heme biosynthesis pathway could provide new means of specifically targeting pathogenic Gram-positive bacteria such as .

摘要

组装血红素的途径在革兰氏阳性菌中最终由一组独特的酶完成。这些反应的底物包括粪卟啉原 III、Fe(II)和 HO,它们具有高度的反应性和毒性。由于这些细菌缺乏膜性隔室,我们假设代谢物通量可能通过最终两个途径酶,粪卟啉原亚铁螯合酶(CpfC)和粪卟啉脱羧酶(ChdC)之间的瞬时蛋白-蛋白相互作用发生。使用来自病原体的酶和相应的Δ敲除菌株来测试该假设。粪卟啉 III 的紫外可见光谱特征可作为蛋白-蛋白相互作用的指示剂。确定了 17±7 μM 的 CpfC-ChdC,与瞬时复合物一致,并观察到两种酶的催化能力在稳定复合物中均受到中度抑制,这也支持了这一假设。用含有 ChdC 活性位点门控单氨基酸突变的质粒转化Δ。这些突变体的卟啉含量和生长表型表明 K129 和 Y133 促进了 ChdC-CpfC 相互作用,并揭示了 E120 的重要性。了解这些酶与血红素生物合成途径中进一步上游的酶之间相互作用的性质,可能为特异性靶向致病革兰氏阳性菌如提供新的方法。

相似文献

1
Control of Metabolite Flux during the Final Steps of Heme Biosynthesis in Gram-Positive Bacteria.
Biochemistry. 2019 Dec 31;58(52):5259-5270. doi: 10.1021/acs.biochem.9b00140. Epub 2019 Jun 26.
3
Staphylococcus aureus haem biosynthesis: characterisation of the enzymes involved in final steps of the pathway.
Mol Microbiol. 2015 Aug;97(3):472-87. doi: 10.1111/mmi.13041. Epub 2015 May 26.
6
Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O and HO Yield Ferric Heme b.
Biochemistry. 2017 Jan 10;56(1):189-201. doi: 10.1021/acs.biochem.6b00958. Epub 2016 Dec 16.
7
HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria.
Arch Biochem Biophys. 2015 May 15;574:27-35. doi: 10.1016/j.abb.2015.02.017. Epub 2015 Feb 21.
9
Entrance channels to coproheme in coproporphyrin ferrochelatase probed by exogenous imidazole binding.
J Inorg Biochem. 2024 Nov;260:112681. doi: 10.1016/j.jinorgbio.2024.112681. Epub 2024 Jul 30.

引用本文的文献

1
Regulation of heme biosynthesis via the coproporphyrin dependent pathway in bacteria.
Front Microbiol. 2024 Mar 21;15:1345389. doi: 10.3389/fmicb.2024.1345389. eCollection 2024.
3
Structural aspects of enzymes involved in prokaryotic Gram-positive heme biosynthesis.
Comput Struct Biotechnol J. 2023 Jul 24;21:3933-3945. doi: 10.1016/j.csbj.2023.07.024. eCollection 2023.
4
Heme acquisition and tolerance in Gram-positive model bacteria: An orchestrated balance.
Heliyon. 2023 Jul 13;9(7):e18233. doi: 10.1016/j.heliyon.2023.e18233. eCollection 2023 Jul.
5
In , a new type of chaperone receives heme from ferrochelatase.
Front Genet. 2023 Jun 21;14:1199357. doi: 10.3389/fgene.2023.1199357. eCollection 2023.
6
Reactivity of Coproheme Decarboxylase with Monovinyl, Monopropionate Deuteroheme.
Biomolecules. 2023 Jun 6;13(6):946. doi: 10.3390/biom13060946.
7
Efficient De Novo Biosynthesis of Heme by Membrane Engineering in .
Int J Mol Sci. 2022 Dec 8;23(24):15524. doi: 10.3390/ijms232415524.

本文引用的文献

1
HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis.
mBio. 2018 Feb 6;9(1):e02287-17. doi: 10.1128/mBio.02287-17.
2
The radical SAM protein HemW is a heme chaperone.
J Biol Chem. 2018 Feb 16;293(7):2558-2572. doi: 10.1074/jbc.RA117.000229. Epub 2017 Dec 27.
3
Extracellular Heme Uptake and the Challenge of Bacterial Cell Membranes.
Annu Rev Biochem. 2017 Jun 20;86:799-823. doi: 10.1146/annurev-biochem-060815-014214. Epub 2017 Apr 19.
4
Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.
Microbiol Mol Biol Rev. 2017 Jan 25;81(1). doi: 10.1128/MMBR.00048-16. Print 2017 Mar.
6
Regulation of intracellular heme trafficking revealed by subcellular reporters.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5144-52. doi: 10.1073/pnas.1609865113. Epub 2016 Aug 15.
7
Unusual Peroxide-Dependent, Heme-Transforming Reaction Catalyzed by HemQ.
Biochemistry. 2015 Jul 7;54(26):4022-32. doi: 10.1021/acs.biochem.5b00492. Epub 2015 Jun 23.
8
Staphylococcus aureus haem biosynthesis: characterisation of the enzymes involved in final steps of the pathway.
Mol Microbiol. 2015 Aug;97(3):472-87. doi: 10.1111/mmi.13041. Epub 2015 May 26.
9
Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme.
Arch Biochem Biophys. 2015 May 15;574:3-17. doi: 10.1016/j.abb.2015.03.004. Epub 2015 Mar 14.
10
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2210-5. doi: 10.1073/pnas.1416285112. Epub 2015 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验