Suppr超能文献

全自动乳腺密度算法的统计学评估。

Statistical evaluation of a fully automated mammographic breast density algorithm.

机构信息

Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada B3H 2Y9.

出版信息

Comput Math Methods Med. 2013;2013:651091. doi: 10.1155/2013/651091. Epub 2013 May 8.

Abstract

Visual assessments of mammographic breast density by radiologists are used in clinical practice; however, these assessments have shown weaker associations with breast cancer risk than area-based, quantitative methods. The purpose of this study is to present a statistical evaluation of a fully automated, area-based mammographic density measurement algorithm. Five radiologists estimated density in 5% increments for 138 "For Presentation" single MLO views; the median of the radiologists' estimates was used as the reference standard. Agreement amongst radiologists was excellent, ICC = 0.884, 95% CI (0.854, 0.910). Similarly, the agreement between the algorithm and the reference standard was excellent, ICC = 0.862, falling within the 95% CI of the radiologists' estimates. The Bland-Altman plot showed that the reference standard was slightly positively biased (+1.86%) compared to the algorithm-generated densities. A scatter plot showed that the algorithm moderately overestimated low densities and underestimated high densities. A box plot showed that 95% of the algorithm-generated assessments fell within one BI-RADS category of the reference standard. This study demonstrates the effective use of several statistical techniques that collectively produce a comprehensive evaluation of the algorithm and its potential to provide mammographic density measures that can be used to inform clinical practice.

摘要

放射科医生对乳腺钼靶密度进行视觉评估在临床实践中得到应用;然而,这些评估与乳腺癌风险的相关性比基于面积的定量方法要弱。本研究旨在对一种全自动、基于面积的乳腺密度测量算法进行统计学评估。五位放射科医生对 138 例“供展示”的单侧 MLO 视图以 5%的增量进行密度估计;将放射科医生的中位数估计值作为参考标准。放射科医生之间的一致性非常好,ICC=0.884,95%CI(0.854,0.910)。同样,算法与参考标准之间的一致性也非常好,ICC=0.862,在放射科医生估计值的 95%CI 范围内。Bland-Altman 图显示参考标准与算法生成的密度相比略有正偏倚(+1.86%)。散点图显示,该算法中度高估了低密度,低估了高密度。箱线图显示,算法生成的评估结果有 95%落在参考标准的一个 BI-RADS 类别内。本研究展示了几种统计技术的有效应用,这些技术共同对算法进行了全面评估,并展示了其提供可用于指导临床实践的乳腺密度测量值的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d892/3662119/ba5e0e540e1d/CMMM2013-651091.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验