Suppr超能文献

验证一种从数字乳腺 X 光片中测量乳房体积密度的方法。

Validation of a method for measuring the volumetric breast density from digital mammograms.

机构信息

Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada.

出版信息

Phys Med Biol. 2010 Jun 7;55(11):3027-44. doi: 10.1088/0031-9155/55/11/003. Epub 2010 May 12.

Abstract

The purpose of this study was to evaluate the performance of an algorithm used to measure the volumetric breast density (VBD) from digital mammograms. The algorithm is based on the calibration of the detector signal versus the thickness and composition of breast-equivalent phantoms. The baseline error in the density from the algorithm was found to be 1.25 +/- 2.3% VBD units (PVBD) when tested against a set of calibration phantoms, of thicknesses 3-8 cm, with compositions equivalent to fibroglandular content (breast density) between 0% and 100% and under x-ray beams between 26 kVp and 32 kVp with a Rh/Rh anode/filter. The algorithm was also tested against images from a dedicated breast computed tomography (CT) scanner acquired on 26 volunteers. The CT images were segmented into regions representing adipose, fibroglandular and skin tissues, and then deformed using a finite-element algorithm to simulate the effects of compression in mammography. The mean volume, VBD and thickness of the compressed breast for these deformed images were respectively 558 cm(3), 23.6% and 62 mm. The displaced CT images were then used to generate simulated digital mammograms, considering the effects of the polychromatic x-ray spectrum, the primary and scattered energy transmitted through the breast, the anti-scatter grid and the detector efficiency. The simulated mammograms were analyzed with the VBD algorithm and compared with the deformed CT volumes. With the Rh/Rh anode filter, the root mean square difference between the VBD from CT and from the algorithm was 2.6 PVBD, and a linear regression between the two gave a slope of 0.992 with an intercept of -1.4 PVBD and a correlation with R(2) = 0.963. The results with the Mo/Mo and Mo/Rh anode/filter were similar.

摘要

本研究旨在评估一种用于从数字乳腺 X 光片中测量体积乳腺密度(VBD)的算法的性能。该算法基于对探测器信号与乳腺等效体模的厚度和组成进行校准。在对一组厚度为 3-8 厘米、具有相当于纤维腺体含量(乳腺密度)为 0%至 100%的组成的校准体模进行测试时,发现该算法的密度基线误差为 1.25 +/- 2.3% VBD 单位(PVBD),X 射线束分别为 26 kVp 和 32 kVp,采用 Rh/Rh 阳极/滤光器。该算法还针对 26 名志愿者专用乳腺计算机断层扫描(CT)扫描仪获得的图像进行了测试。CT 图像被分割成代表脂肪、纤维腺体和皮肤组织的区域,然后使用有限元算法对其进行变形,以模拟在乳腺 X 光摄影中的压缩效果。这些变形图像的平均体积、VBD 和压缩乳房的厚度分别为 558cm(3)、23.6%和 62mm。然后使用这些移位的 CT 图像生成模拟数字乳腺 X 光片,考虑多色 X 射线光谱、通过乳房传输的初级和散射能量、防散射格栅和探测器效率的影响。分析了模拟的乳腺 X 光片,并与变形的 CT 体积进行了比较。使用 Rh/Rh 阳极滤光器,CT 和算法得出的 VBD 的均方根差为 2.6 PVBD,两者之间的线性回归斜率为 0.992,截距为-1.4 PVBD,相关系数为 R(2)=0.963。使用 Mo/Mo 和 Mo/Rh 阳极/滤光器的结果相似。

相似文献

1
Validation of a method for measuring the volumetric breast density from digital mammograms.
Phys Med Biol. 2010 Jun 7;55(11):3027-44. doi: 10.1088/0031-9155/55/11/003. Epub 2010 May 12.
6
Quantification of breast density with dual energy mammography: a simulation study.
Med Phys. 2008 Dec;35(12):5411-8. doi: 10.1118/1.3002308.
8
Breast density quantification in dual-energy mammography using virtual anthropomorphic phantoms.
J Appl Clin Med Phys. 2024 May;25(5):e14360. doi: 10.1002/acm2.14360. Epub 2024 Apr 22.
9
Comparison of volumetric breast density estimations from mammography and thorax CT.
Phys Med Biol. 2014 Aug 7;59(15):4391-409. doi: 10.1088/0031-9155/59/15/4391. Epub 2014 Jul 22.

引用本文的文献

1
Artificial intelligence in cancer imaging: Clinical challenges and applications.
CA Cancer J Clin. 2019 Mar;69(2):127-157. doi: 10.3322/caac.21552. Epub 2019 Feb 5.
2
Automated mammographic breast density estimation using a fully convolutional network.
Med Phys. 2018 Mar;45(3):1178-1190. doi: 10.1002/mp.12763. Epub 2018 Feb 19.
3
Qualitative Versus Quantitative Mammographic Breast Density Assessment: Applications for the US and Abroad.
Diagnostics (Basel). 2017 May 31;7(2):30. doi: 10.3390/diagnostics7020030.
5
A Review on Automatic Mammographic Density and Parenchymal Segmentation.
Int J Breast Cancer. 2015;2015:276217. doi: 10.1155/2015/276217. Epub 2015 Jun 11.
6
Measurement of breast density with digital breast tomosynthesis--a systematic review.
Br J Radiol. 2014 Nov;87(1043):20140460. doi: 10.1259/bjr.20140460. Epub 2014 Aug 22.
7
Research in digital mammography and tomosynthesis at the University of Toronto.
Radiol Phys Technol. 2014 Jul;7(2):191-202. doi: 10.1007/s12194-014-0277-y. Epub 2014 Jun 25.
8
Mammographic density estimation with automated volumetric breast density measurement.
Korean J Radiol. 2014 May-Jun;15(3):313-21. doi: 10.3348/kjr.2014.15.3.313. Epub 2014 Apr 29.
9
Breast density quantification with cone-beam CT: a post-mortem study.
Phys Med Biol. 2013 Dec 7;58(23):8573-91. doi: 10.1088/0031-9155/58/23/8573.
10
Statistical evaluation of a fully automated mammographic breast density algorithm.
Comput Math Methods Med. 2013;2013:651091. doi: 10.1155/2013/651091. Epub 2013 May 8.

本文引用的文献

1
The myth of the 50-50 breast.
Med Phys. 2009 Dec;36(12):5437-43. doi: 10.1118/1.3250863.
3
Accurate estimation of compressed breast thickness in mammography.
Med Phys. 2009 Feb;36(2):577-86. doi: 10.1118/1.3065068.
4
Measurement of compressed breast thickness by optical stereoscopic photogrammetry.
Med Phys. 2009 Feb;36(2):569-76. doi: 10.1118/1.3065066.
5
Predicting tumor location by modeling the deformation of the breast.
IEEE Trans Biomed Eng. 2008 Oct;55(10):2471-80. doi: 10.1109/TBME.2008.925714.
6
The effect of skin thickness determined using breast CT on mammographic dosimetry.
Med Phys. 2008 Apr;35(4):1199-206. doi: 10.1118/1.2841938.
7
Dedicated breast CT: initial clinical experience.
Radiology. 2008 Mar;246(3):725-33. doi: 10.1148/radiol.2463070410. Epub 2008 Jan 14.
8
Dietary intake and breast density in high-risk women: a cross-sectional study.
Breast Cancer Res. 2007;9(5):R72. doi: 10.1186/bcr1781.
9
Simulation of mechanical compression of breast tissue.
IEEE Trans Biomed Eng. 2007 Oct;54(10):1885-91. doi: 10.1109/TBME.2007.893493.
10
Mammographic density and dietary patterns: the multiethnic cohort.
Eur J Cancer Prev. 2007 Oct;16(5):409-14. doi: 10.1097/01.cej.0000243852.05104.02.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验