Greenwood D D
School of Audiology and Speech Sciences, University of British Columbia, Vancouver, Canada.
J Acoust Soc Am. 1990 Jun;87(6):2592-605. doi: 10.1121/1.399052.
Accurate cochlear frequency-position functions based on physiological data would facilitate the interpretation of physiological and psychoacoustic data within and across species. Such functions might aid in developing cochlear models, and cochlear coordinates could provide potentially useful spectral transforms of speech and other acoustic signals. In 1961, an almost-exponential function was developed (Greenwood, 1961b, 1974) by integrating an exponential function fitted to a subset of frequency resolution-integration estimates (critical bandwidths). The resulting frequency-position function was found to fit cochlear observations on human cadaver ears quite well and, with changes of constants, those on elephant, cow, guinea pig, rat, mouse, and chicken (Békésy, 1960), as well as in vivo (behavioral-anatomical) data on cats (Schucknecht, 1953). Since 1961, new mechanical and other physiological data have appeared on the human, cat, guinea pig, chinchilla, monkey, and gerbil. It is shown here that the newer extended data on human cadaver ears and from living animal preparations are quite well fit by the same basic function. The function essentially requires only empirical adjustment of a single parameter to set an upper frequency limit, while a "slope" parameter can be left constant if cochlear partition length is normalized to 1 or scaled if distance is specified in physical units. Constancy of slope and form in dead and living ears and across species increases the probability that the function fitting human cadaver data may apply as well to the living human ear. This prospect increases the function's value in plotting auditory data and in modeling concerned with speech and other bioacoustic signals, since it fits the available physiological data well and, consequently (if those data are correct), remains independent of, and an appropriate means to examine, psychoacoustic data and assumptions.
基于生理数据的精确耳蜗频率-位置函数将有助于解释物种内部和跨物种的生理及心理声学数据。此类函数可能有助于开发耳蜗模型,并且耳蜗坐标可为语音和其他声学信号提供潜在有用的频谱变换。1961年,通过对拟合频率分辨率-积分估计(临界带宽)子集的指数函数进行积分,得到了一个近似指数函数(格林伍德,1961b,1974)。结果发现,所得的频率-位置函数与人类尸体耳朵的耳蜗观测结果拟合得相当好,并且通过改变常数,也能拟合大象、牛、豚鼠、大鼠、小鼠和鸡的观测结果(贝凯西,1960),以及猫的体内(行为-解剖学)数据(舒克内希特,1953)。自1961年以来,关于人类、猫、豚鼠、毛丝鼠、猴子和沙鼠出现了新的机械及其他生理数据。本文表明,人类尸体耳朵和活体动物标本的更新扩展数据通过相同的基本函数能得到很好的拟合。该函数本质上只需要对单个参数进行经验调整以设定上限频率,而如果将耳蜗分区长度归一化为1,“斜率”参数可以保持不变;如果以物理单位指定距离,则可以进行缩放。死耳和活耳以及跨物种的斜率和形式的恒定性增加了拟合人类尸体数据的函数也可能适用于活人耳朵的可能性。这一前景增加了该函数在绘制听觉数据以及与语音和其他生物声学信号相关的建模中的价值,因为它能很好地拟合现有的生理数据,因此(如果这些数据正确),它独立于心理声学数据和假设,并且是检验这些数据和假设的合适手段。