Lab for Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands.
5th Medical Department, Section of Endocrinology, Medical Faculty Mannheim, University of Heidelberg, Germany.
Stem Cells. 2018 Feb;36(2):240-251. doi: 10.1002/stem.2726. Epub 2017 Nov 8.
Long-term diabetes leads to macrovascular and microvascular complication. In diabetic retinopathy (DR), persistent hyperglycemia causes permanent loss of retinal pericytes and aberrant proliferation of microvascular endothelial cells (ECs). Adipose tissue-derived stromal cells (ASCs) may serve to functionally replace retinal pericytes and normalize retinal microvasculature during disease progression. We hypothesized that Notch signaling in ASC underlies regulation and stabilization of dysfunctional retinal microvascular networks such as in DR. ASC prominently and constitutively expressed NOTCH2. Genetic knockdown of NOTCH2 in ASC (SH-NOTCH2) disturbed the formation of vascular networks of human umbilical cord vein endothelial cells both on monolayers of ASC and in organotypical three-dimensional cocultures with ASC. On ASC SH-NOTCH2, cell surface platelet-derived growth factor receptor beta was downregulated which disrupted their migration toward the chemoattractant platelet-derived growth factor beta subunits (PDGF-BB) as well as to conditioned media from EC and bovine retinal EC. This chemoattractant is secreted by pro-angiogenic EC in newly formed microvascular networks to attract pericytes. Intravitreal injected ASC SH-NOTCH2 in oxygen-induced retinopathy mouse eyes did not engraft in the preexisting retinal microvasculature. However, the in vivo pro-angiogenic capacity of ASC SH-NOTCH2 did not differ from controls. In this respect, multifocal electroretinography displayed similar b-wave amplitudes in the avascular zones when either wild type ASC or SH-NOTCH2 ASC were injected. In conclusion, our results indicate that NOTCH2 is essential to support in vitro vasculogenesis via juxtacrine interactions. In contrast, ongoing in vivo angiogenesis is influenced by paracrine signaling of ASC, irrespective of Notch signaling. Stem Cells 2018;36:240-251.
长期的糖尿病会导致大血管和微血管并发症。在糖尿病性视网膜病变(DR)中,持续的高血糖导致视网膜周细胞的永久性丧失和微血管内皮细胞(EC)的异常增殖。脂肪组织来源的基质细胞(ASCs)可能在疾病进展过程中发挥功能,替代视网膜周细胞并使视网膜微血管正常化。我们假设 ASC 中的 Notch 信号在调节和稳定功能失调的视网膜微血管网络(如 DR 中)中起作用。ASCs 显著且组成性地表达 NOTCH2。ASCs 中的 NOTCH2 基因敲低(SH-NOTCH2)扰乱了人脐静脉内皮细胞血管网络的形成,无论是在 ASCs 的单层上还是在与 ASCs 的器官型三维共培养物中。在 ASCs SH-NOTCH2 上,细胞表面血小板衍生生长因子受体β下调,这破坏了它们向趋化因子血小板衍生生长因子β亚基(PDGF-BB)以及 EC 和牛视网膜 EC 条件培养基的迁移。这种趋化因子由新形成的微血管网络中的促血管生成 EC 分泌,以吸引周细胞。在氧诱导的视网膜病变小鼠眼中,玻璃体内注射 ASCs SH-NOTCH2 并未在已存在的视网膜微血管中植入。然而,ASCs SH-NOTCH2 的体内促血管生成能力与对照没有差异。在这方面,当注射野生型 ASC 或 SH-NOTCH2 ASC 时,多焦视网膜电图在无血管区显示出相似的 b 波幅度。总之,我们的结果表明,NOTCH2 对于通过旁分泌相互作用支持体外血管生成是必不可少的。相比之下,持续的体内血管生成受 ASC 的旁分泌信号影响,而与 Notch 信号无关。干细胞 2018;36:240-251。