Suppr超能文献

用于模拟核因子κB信号网络中外源噪声驱动响应的统计系综分析。

Statistical ensemble analysis for simulating extrinsic noise-driven response in NF-κB signaling networks.

作者信息

Joo Jaewook, Plimpton Steven J, Faulon Jean-Loup

机构信息

Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA.

出版信息

BMC Syst Biol. 2013 Jun 7;7:45. doi: 10.1186/1752-0509-7-45.

Abstract

BACKGROUND

Gene expression profiles and protein dynamics in single cells have a large cell-to-cell variability due to intracellular noise. Intracellular fluctuations originate from two sources: intrinsic noise due to the probabilistic nature of biochemical reactions and extrinsic noise due to randomized interactions of the cell with other cellular systems or its environment. Presently, there is no systematic parameterization and modeling scheme to simulate cellular response at the single cell level in the presence of extrinsic noise.

RESULTS

In this paper, we propose a novel statistical ensemble method to simulate the distribution of heterogeneous cellular responses in single cells. We capture the effects of extrinsic noise by randomizing values of the model parameters. In this context, a statistical ensemble is a large number of system replicates, each with randomly sampled model parameters from biologically feasible intervals. We apply this statistical ensemble approach to the well-studied NF-κB signaling system. We predict several characteristic dynamic features of NF-κB response distributions; one of them is the dosage-dependent distribution of the first translocation time of NF-κB.

CONCLUSION

The distributions of heterogeneous cellular responses that our statistical ensemble formulation generates reveal the effect of different cellular conditions, e.g., effects due to wild type versus mutant cells or between different dosages of external stimulants. Distributions generated in the presence of extrinsic noise yield valuable insight into underlying regulatory mechanisms, which are sometimes otherwise hidden.

摘要

背景

由于细胞内噪声,单细胞中的基因表达谱和蛋白质动态具有很大的细胞间变异性。细胞内波动源于两个来源:生化反应概率性质导致的内在噪声,以及细胞与其他细胞系统或其环境随机相互作用导致的外在噪声。目前,在存在外在噪声的情况下,没有系统的参数化和建模方案来模拟单细胞水平的细胞反应。

结果

在本文中,我们提出了一种新颖的统计系综方法来模拟单细胞中异质细胞反应的分布。我们通过随机化模型参数值来捕捉外在噪声的影响。在此背景下,统计系综是大量系统复制品,每个复制品都具有从生物学可行区间随机采样的模型参数。我们将这种统计系综方法应用于研究充分的NF-κB信号系统。我们预测了NF-κB反应分布的几个特征动态特征;其中之一是NF-κB首次转位时间的剂量依赖性分布。

结论

我们的统计系综公式生成的异质细胞反应分布揭示了不同细胞条件的影响,例如野生型与突变细胞之间或不同剂量外部刺激剂之间的影响。在存在外在噪声的情况下生成的分布为潜在的调控机制提供了有价值的见解,而这些机制有时在其他情况下是隐藏的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe9/3695840/977fe1195e3a/1752-0509-7-45-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验