Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom;
Genome Res. 2013 Nov;23(11):1874-84. doi: 10.1101/gr.154815.113. Epub 2013 Jun 6.
The adaptive immune response selectively expands B- and T-cell clones following antigen recognition by B- and T-cell receptors (BCR and TCR), respectively. Next-generation sequencing is a powerful tool for dissecting the BCR and TCR populations at high resolution, but robust computational analyses are required to interpret such sequencing. Here, we develop a novel computational approach for BCR repertoire analysis using established next-generation sequencing methods coupled with network construction and population analysis. BCR sequences organize into networks based on sequence diversity, with differences in network connectivity clearly distinguishing between diverse repertoires of healthy individuals and clonally expanded repertoires from individuals with chronic lymphocytic leukemia (CLL) and other clonal blood disorders. Network population measures defined by the Gini Index and cluster sizes quantify the BCR clonality status and are robust to sampling and sequencing depths. BCR network analysis therefore allows the direct and quantifiable comparison of BCR repertoires between samples and intra-individual population changes between temporal or spatially separated samples and over the course of therapy.
适应性免疫反应通过 B 细胞受体 (BCR) 和 T 细胞受体 (TCR) 分别选择性地扩增抗原识别后的 B 细胞和 T 细胞克隆。下一代测序是一种强大的工具,可以高分辨率解析 BCR 和 TCR 群体,但需要强大的计算分析来解释这些测序。在这里,我们开发了一种新的 BCR 库分析计算方法,该方法使用已建立的下一代测序方法结合网络构建和群体分析。BCR 序列根据序列多样性组织成网络,网络连接性的差异清楚地区分了健康个体的多样化库和慢性淋巴细胞白血病 (CLL) 个体和其他克隆性血液疾病的克隆扩增库。基尼指数和聚类大小定义的网络群体度量量化了 BCR 的克隆性状态,并且对采样和测序深度具有鲁棒性。因此,BCR 网络分析允许在样本之间直接和定量地比较 BCR 库,以及在时间或空间上分离的样本之间以及治疗过程中个体内群体变化。