Suppr超能文献

从基因组区间集合中进行目标推断。

Target inference from collections of genomic intervals.

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):E2271-8. doi: 10.1073/pnas.1306909110. Epub 2013 Jun 6.

Abstract

Finding regions of the genome that are significantly recurrent in noisy data are a common but difficult problem in present day computational biology. Cores of recurrent events (CORE) is a computational approach to solving this problem that is based on a formalized notion by which "core" intervals explain the observed data, where the number of cores is the "depth" of the explanation. Given that formalization, we implement CORE as a combinatorial optimization procedure with depth chosen from considerations of statistical significance. An important feature of CORE is its ability to explain data with cores of widely varying lengths. We examine the performance of this system with synthetic data, and then provide two demonstrations of its utility with actual data. Applying CORE to a collection of DNA copy number profiles from single cells of a given tumor, we determine tumor population phylogeny and find the features that separate subpopulations. Applying CORE to comparative genomic hybridization data from a large set of tumor samples, we define regions of recurrent copy number aberration in breast cancer.

摘要

在当今的计算生物学中,从嘈杂的数据中找到基因组中频繁出现的区域是一个常见但具有挑战性的问题。核心重复事件(CORE)是一种解决此问题的计算方法,它基于一种形式化的概念,即“核心”区间解释了观察到的数据,其中核心的数量是解释的“深度”。基于该形式化,我们将 CORE 实现为一种组合优化过程,其深度根据统计显著性的考虑因素进行选择。CORE 的一个重要特点是它能够用具有广泛变化长度的核心来解释数据。我们使用合成数据检查了该系统的性能,然后用实际数据提供了两个实用程序的演示。将 CORE 应用于给定肿瘤单细胞的 DNA 拷贝数谱的集合,我们确定肿瘤群体的系统发育并找到分离亚群的特征。将 CORE 应用于来自大量肿瘤样本的比较基因组杂交数据,我们定义了乳腺癌中经常出现的拷贝数异常区域。

相似文献

1
Target inference from collections of genomic intervals.从基因组区间集合中进行目标推断。
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):E2271-8. doi: 10.1073/pnas.1306909110. Epub 2013 Jun 6.
5
An Entropy-Regularized Framework for Detecting Copy Number Variants.一种用于检测拷贝数变异的基于熵正则化的框架。
IEEE Trans Biomed Eng. 2019 Mar;66(3):682-688. doi: 10.1109/TBME.2018.2854628. Epub 2018 Jul 9.
10
Array-Based Comparative Genomic Hybridization (aCGH).基于微阵列的比较基因组杂交(aCGH)。
Methods Mol Biol. 2017;1541:167-179. doi: 10.1007/978-1-4939-6703-2_15.

引用本文的文献

1
Ordered and deterministic cancer genome evolution after p53 loss.p53 失活后有序且确定的癌症基因组进化。
Nature. 2022 Aug;608(7924):795-802. doi: 10.1038/s41586-022-05082-5. Epub 2022 Aug 17.
2
8
Computational methods for DNA copy-number analysis of tumors.肿瘤DNA拷贝数分析的计算方法
Methods Mol Biol. 2014;1176:243-59. doi: 10.1007/978-1-4939-0992-6_20.

本文引用的文献

1
A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions.染色体缺失中一组协同作用的抑癌候选基因。
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8212-7. doi: 10.1073/pnas.1206062109. Epub 2012 May 7.
3
Tumour evolution inferred by single-cell sequencing.单细胞测序推断肿瘤进化。
Nature. 2011 Apr 7;472(7341):90-4. doi: 10.1038/nature09807. Epub 2011 Mar 13.
8
Strong association of de novo copy number mutations with autism.新发拷贝数突变与自闭症的强关联。
Science. 2007 Apr 20;316(5823):445-9. doi: 10.1126/science.1138659. Epub 2007 Mar 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验