Suppr超能文献

工程化氧化还原辅因子利用以解毒甘油醛,一种酿酒酵母生物乙醇生产的关键抑制剂。

Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.

机构信息

Department of Environmental Science, Faculty of Agriculture, Saga University, Saga 8408502, Japan.

出版信息

Appl Microbiol Biotechnol. 2013 Jul;97(14):6589-600. doi: 10.1007/s00253-013-4997-4. Epub 2013 Jun 7.

Abstract

Hot-compressed water treatment of lignocellulose liberates numerous inhibitors that prevent ethanol fermentation of yeast Saccharomyces cerevisiae. Glycolaldehyde is one of the strongest fermentation inhibitors and we developed a tolerant strain by overexpressing ADH1 encoding an NADH-dependent reductase; however, its recovery was partial. In this study, to overcome this technical barrier, redox cofactor preference of glycolaldehyde detoxification was investigated. Glycolaldehyde-reducing activity of the ADH1-overexpressing strain was NADH-dependent but not NADPH-dependent. Moreover, genes encoding components of the pentose phosphate pathway, which generates intracellular NADPH, was upregulated in response to high concentrations of glycolaldehyde. Mutants defective in pentose phosphate pathways were sensitive to glycolaldehyde. Genome-wide survey identified GRE2 encoding a NADPH-dependent reductase as the gene that confers tolerance to glycolaldehyde. Overexpression of GRE2 in addition to ADH1 further improved the tolerance to glycolaldehyde. NADPH-dependent glycolaldehyde conversion to ethylene glycol and NADP+ content of the strain overexpressing both ADH1 and GRE2 were increased at 5 mM glycolaldehyde. Expression of GRE2 was increased in response to glycolaldehyde. Carbon metabolism of the strain was rerouted from glycerol to ethanol. Thus, it was concluded that the overexpression of GRE2 together with ADH1 restores glycolaldehyde tolerance by augmenting the NADPH-dependent reduction pathway in addition to NADH-dependent reduction pathway. The redox cofactor control for detoxification of glycolaldehyde proposed in this study could influence strategies for improving the tolerance of other fermentation inhibitors.

摘要

高温热水处理木质纤维素会释放出许多抑制剂,这些抑制剂会阻止酵母酿酒酵母的乙醇发酵。乙醛是最强的发酵抑制剂之一,我们通过过表达编码 NADH 依赖性还原酶的 ADH1 基因来开发了一种耐受菌株;然而,其恢复是部分的。在这项研究中,为了克服这一技术障碍,研究了乙醛解毒的氧化还原辅助因子偏好性。过表达 ADH1 的菌株的乙醛还原活性依赖于 NADH,而不依赖于 NADPH。此外,编码生成细胞内 NADPH 的戊糖磷酸途径的基因在高浓度乙醛的刺激下上调。戊糖磷酸途径缺陷的突变体对乙醛敏感。全基因组调查确定编码 NADPH 依赖性还原酶的 GRE2 基因是赋予乙醛耐受性的基因。在过表达 ADH1 的基础上过表达 GRE2 进一步提高了对乙醛的耐受性。在 5 mM 乙醛时,过表达 ADH1 和 GRE2 的菌株的 NADPH 依赖性乙醛转化为乙二醇和 NADP+含量增加。GRE2 的表达随着乙醛的增加而增加。该菌株的碳代谢从甘油转向乙醇。因此,可以得出结论,GRE2 的过表达与 ADH1 一起,通过增强 NADPH 依赖性还原途径,除了 NADH 依赖性还原途径外,还恢复了乙醛的耐受性。本研究提出的用于乙醛解毒的氧化还原辅助因子控制可能会影响提高其他发酵抑制剂耐受性的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验